- 【激活函数总结】Pytorch中的激活函数详解: ReLU、Leaky ReLU、Sigmoid、Tanh 以及 Softmax
阿_旭
深度学习知识点pytorch人工智能python激活函数深度学习
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.
- 两种常用损失函数:nn.CrossEntropyLoss 与 nn.TripletMarginLoss
大多_C
人工智能算法python机器学习
两种用于模型训练的损失函数:nn.CrossEntropyLoss和nn.TripletMarginLoss。它们在对比学习和分类任务中各自扮演不同的角色。接下来是对这两种损失函数的详细介绍。1.nn.CrossEntropyLossnn.CrossEntropyLoss是PyTorch提供的交叉熵损失函数,通常用于多分类任务中。它结合了softmax激活函数和负对数似然损失(NegativeLo
- pytorch正向传播没问题,loss.backward()使定义的神经网络中权重参数变为nan
加速却甩不掉伤悲
pytorch神经网络人工智能
记录一个非常坑爹的bug:loss回传导致神经网络中一个linear层的权重参数变为nan1.首先loss值是正常数值;2.查了好多网上的解决办法:检查原始输入神经网络数据有没有nan值,初始化权重参数,使用relu激活函数,梯度裁剪,降低优化器的学习率等等都没解决,个人认为这些应该影响不大,一般不会出问题;3.最后是使用如下异常检测:检测在loss回传过程中哪一块出现了问题torch.autog
- 工信教考 | AI智能体应用工程师(模拟试题)
人工智能-猫猫
人工智能开源自然语言处理语言模型架构
关于AI智能体工程师的模拟试题,下面根据AI智能体工程师所需掌握的知识和技能,设计一些模拟题型的示例。这些题目旨在考察应试者在人工智能、机器学习、深度学习、算法设计、系统开发等方面的能力。一、选择题无监督学习常用于哪些任务?(单选)A.回归分析B.聚类分析C.分类预测D.序列预测答案:B解析:无监督学习常用于聚类、降维、异常检测等任务,如市场分割、数据可视化等。以下哪种激活函数常用于分类问题的输出
- 常用torch.nn
mm_exploration
MyDiffusionpythonpytorch人工智能
目录一、torch.nn和torch.nn.functional二、nn.Linear三、nn.Embedding四、nn.Identity五、Pytorch非线性激活函数六、nn.Conv2d七、nn.Sequential八、nn.ModuleList九、torch.outertorch.cat一、torch.nn和torch.nn.functionalPytorch中torch.nn和torc
- 大模型入门(一)
pit_man
人工智能大模型
大模型入门(一)一、LLaMa模型介绍1)Pre-normalization2)SwiGLU激活函数3)RoPE旋转位置编码二、Alpaca模型介绍三、Vicuna模型介绍大模型入门(一)——LLaMa/Alpaca/VicunaLLaMa模型是Meta开源的大模型,模型参数从7B到65B不等,LLaMa-7B在大多数基准测试上超过了GPT3-173B,而LLaMa-65B和Chinchilla-
- Pytorch机器学习——3 神经网络(三)
辘轳鹿鹿
outline神经元与神经网络激活函数前向算法损失函数反向传播算法数据的准备PyTorch实例:单层神经网络实现3.2激活函数3.2.2TanhTanh是一个双曲三角函数,其公式如下所示:image.png从图像上可以看出,与Sigmoid不同,它将输入变量映射到(-1,1)之间,它是Sigmoid函数经过简单的变换得到的。导数优缺点:优点:由于其图形在定义域0附近近似线性,并且在整个定义域有可导
- KAN网络技术最全解析——最热KAN能否干掉MLP和Transformer?(收录于GPT-4/ChatGPT技术与产业分析)
u013250861
#LLM/Transformertransformerchatgpt深度学习
KAN网络结构思路来自Kolmogorov-Arnold表示定理。MLP在节点(“神经元”)上具有固定的激活函数,而KAN在边(“权重”)上具有可学习的激活函数。在数据拟合和PDE求解中,较小的KAN可以比较大的MLP获得更好的准确性。相对MLP,KAN也具备更好的可解释性,适合作为数学和物理研究中的辅助模型,帮助发现和寻找更基础的数值规律。(点赞是我们分享的动力)MLP与KAN对比与传统的MLP
- NPU技术总结
技术学习分享
webglprocesson
NPUs简介定义:NPUs是一种专门为执行机器学习算法和神经网络操作而设计的处理器。起源:随着人工智能和深度学习的发展,NPUs应运而生,以满足对高效率和高能效的计算需求。NPUs的设计架构:NPUs通常采用不同于传统CPU或GPU的架构,优化了矩阵运算和并行处理。指令集:它们拥有专门的指令集,用于加速神经网络中的常见操作,如卷积和激活函数。NPUs的核心技术并行性:NPUs利用数据并行性和任务并
- 问题
三点水_787a
卷积层和池化层都能反向传播DenseNet→修改了网络结构U-Net→修改了激活函数,拼接catResNet→相加add
- 学习笔记---自动驾驶
酒饮微醉-
自动驾驶学习笔记自动驾驶
一、理论知识1.自动驾驶决策概述:自动驾驶决策层是系统的核心,负责根据感知层信息建立模型,分析并制定决策策略,控制车辆行驶。2.端到端深度神经网络:通过深度神经网络将感知数据直接映射到控制命令,简化自动驾驶系统的决策流程。3.卷积神经网络(CNN):关键技术用于提取图像特征,包括卷积层、激活函数、池化层等组件处理图像数据。4.循环神经网络(RNN):处理序列数据,如车辆历史速度序列,用于建模时间序
- 【深度学习】
feifeikon
深度学习人工智能
梯度消失和梯度爆炸(解释意思,分析产生原因)在反向传播过程中需要对激活函数进行求导,如果导数大于1,那么随着网络层数的增加梯度更新将会朝着指数爆炸的方式增加这就是梯度爆炸。同样如果导数小于1,那么随着网络层数的增加梯度更新信息会朝着指数衰减的方式减少这就是梯度消失。因此,梯度消失、爆炸,其根本原因在于反向传播训练法则,属于先天不足。请解释什么是batchnormal,它有什么作用?神经网络在训练的
- 深度学习(二)
小泽爱刷题
深度学习人工智能
CuDNN(CUDADeepNeuralNetworklibrary)是NVIDIA为加速深度学习计算而开发的高性能GPU加速库,专门优化了深度神经网络(DNN)的常见操作,如卷积、池化、归一化和激活函数等。CuDNN的主要作用是通过利用GPU的并行计算能力,提高深度学习模型在GPU上的运行效率。CuDNN的作用加速卷积操作:卷积操作是深度学习中特别是在卷积神经网络(CNN)中最重要且最计算密集的
- 深度学习速通系列:梯度消失vs梯度爆炸
Ven%
深度学习速通系列人工智能深度学习python
梯度消失和梯度爆炸是深度学习中训练深层神经网络时常见的两个问题,它们影响网络的训练过程和性能。梯度消失(VanishingGradientProblem)定义:梯度消失是指在深层神经网络的反向传播过程中,由于链式法则,梯度值随着层数的增加而迅速减小,最终趋近于零。原因:激活函数的导数很小,如Sigmoid或Tanh函数在输入值非常大或非常小的时候导数接近零。权重初始化不当,导致梯度在网络中的传播过
- 【深度学习】embedding的简单理解
旅途中的宽~
深度学习笔记深度学习embedding
文章目录一、简单理解二、其他通俗理解一、简单理解特征嵌入,将数据转换(降维)为固定大小的特征表示(矢量),以便于处理和计算(如求距离)。例如,针对用于说话者识别的语音信号训练的模型可以允许您将语音片段转换为数字向量,使得来自相同说话者的另一片段与原始向量具有小的距离(例如,欧几里德距离)。embedding的主要目的是对(稀疏)特征进行降维,它降维的方式可以类比为一个全连接层(没有激活函数),通过
- Python在神经网络中优化激活函数选择使用详解
Rocky006
python开发语言
概要在神经网络中,激活函数扮演着至关重要的角色。它的主要作用是引入非线性因素,使得神经网络能够处理复杂的非线性问题。如果没有激活函数,神经网络仅仅是线性模型的堆叠,无法胜任深度学习中的各种任务。本文将深入探讨几种常用的激活函数,包括Sigmoid、Tanh、ReLU及其变种,并通过具体的代码示例展示它们在Python中的实现和应用。激活函数的重要性激活函数将输入信号进行非线性转换,从而增强神经网络
- 理解PyTorch版YOLOv5模型构架
LabVIEW_Python
一个深度学习模型,可以拆解为:模型构架(ModelArchitecture):下面详述激活函数(ActivationFunction):YOLOv5在隐藏层中使用了LeakyReLU激活函数,在最后的检测层中使用了Sigmoid激活函数,参考这里优化函数(OptimizationFunction):YOLOv5的默认优化算法是:SGD;可以通过命令行参数更改为Adam损失函数(LossFuncti
- 小白学大模型——Qwen2理论篇
fan_fan_feng
大模型人工智能自然语言处理
一、Qwen2架构图二、Qwen2技术修改点TransformerArchitecturewithSwiGLUactivation:不多说,最主流的transformer架构,不变。但是,SwiGLU激活函数是GLU变体,可以让模型学习表达更加复杂的模式。QKVbias:在Transformer模型中,Q、K、V分别代表查询(Query)、键(Key)和值(Value)。这些向量是通过输入向量与对
- BCEWithLogitsLoss
hero_hilog
算法pytorch
BCEWithLogitsLoss是PyTorch深度学习框架中的一个损失函数,用于二元分类问题。它结合了Sigmoid激活函数和二元交叉熵损失(BinaryCrossEntropyLoss),使得在训练过程中更加数值稳定。特点:数值稳定性:直接使用Sigmoid函数后跟BCE损失可能会遇到数值稳定性问题,特别是当输入值非常大或非常小的时候。BCEWithLogitsLoss通过内部使用Logi
- Keras深度学习库的常用函数与参数详解及实例
零 度°
pythonpythonkeras
Keras是一个高级的神经网络API,它能够以TensorFlow、CNTK或Theano作为后端运行,以支持快速的实验和模型构建。Keras以其用户友好、模块化、可扩展性而受到广泛欢迎,适用于从深度学习新手到经验丰富的研究人员。常用函数及其参数Dense()全连接层,用于构建神经网络中的线性部分。units:层中的神经元数量。activation:激活函数,默认为’relu’。use_bias:
- 深度学习学习经验——深度学习名词字典
Linductor
深度学习学习经验深度学习学习人工智能
深度学习名词字典1.张量(Tensor)2.神经网络(NeuralNetwork)3.损失函数(LossFunction)4.优化器(Optimizer)5.激活函数(ActivationFunction)6.前向传播(ForwardPropagation)7.反向传播(BackwardPropagation)8.批量(Batch)9.欠拟合(Underfitting)10.过拟合(Overfit
- 神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)
MarkHD
深度学习神经网络计算机视觉
神经网络,特别是深度学习,在计算机视觉等领域有着广泛的应用。以下是关于你提到的几个关键概念的详细解释:神经网络:神经网络是一种模拟人脑神经元结构的计算模型,用于处理复杂的数据和模式识别任务。它由多个神经元(或称为节点)组成,这些神经元通过权重和偏置进行连接,并可以学习调整这些参数以优化性能。深度学习:深度学习是神经网络的一个子领域,主要关注于构建和训练深度神经网络(即具有多个隐藏层的神经网络)。通
- 计算机设计大赛 题目:基于卷积神经网络的手写字符识别 - 深度学习
iuerfee
python
文章目录0前言1简介2LeNet-5模型的介绍2.1结构解析2.2C1层2.3S2层S2层和C3层连接2.4F6与C5层3写数字识别算法模型的构建3.1输入层设计3.2激活函数的选取3.3卷积层设计3.4降采样层3.5输出层设计4网络模型的总体结构5部分实现代码6在线手写识别7最后0前言优质竞赛项目系列,今天要分享的是基于卷积神经网络的手写字符识别该项目较为新颖,适合作为竞赛课题方向,学长非常推荐
- 深度学习——梯度消失、梯度爆炸
小羊头发长
深度学习机器学习人工智能
本文参考:深度学习之3——梯度爆炸与梯度消失梯度消失和梯度爆炸的根源:深度神经网络结构、反向传播算法目前优化神经网络的方法都是基于反向传播的思想,即根据损失函数计算的误差通过反向传播的方式,指导深度网络权值的更新。为什么神经网络优化用到梯度下降的优化方法?深度网络是由许多非线性层(带有激活函数)堆叠而成,每一层非线性层可以视为一个非线性函数f(x),因此整个深度网络可以视为一个复合的非线性多元函数
- 深度学习如何入门?
nanshaws
yolov5深度学习
深度学习是机器学习的一个子领域,它基于人工神经网络的研究。入门深度学习可以分为以下几个步骤:基础知识准备:(1)掌握基础数学知识,特别是线性代数、概率论和统计学、微积分。(2)学习编程语言,Python是目前最流行的深度学习语言,因其简洁易学且有大量的库支持。(3)了解机器学习基础,包括监督学习和非监督学习的概念、模型评估与选择等。学习深度学习理论:(1)理解神经网络的基本组成,如神经元、激活函数
- 神经网络算法浅谈
dami_king
神经网络算法深度学习人工智能AIGC
神经网络是一种模拟人脑神经元工作原理的计算模型,由大量的人工神经元相互连接形成复杂网络结构,用于解决各种机器学习和人工智能问题。以下是对神经网络算法的浅析:一、网络结构神经网络的核心在于其层次结构,其中包括:输入层(InputLayer):接收原始特征数据。隐藏层(HiddenLayers):包含若干层,每层包含多个神经元,每个神经元接收到上一层的输出作为输入,并通过加权和与非线性变换(激活函数)
- 基于卷积神经网络的图像去噪
神经网络机器学习智能算法画图绘图
cnn人工智能神经网络卷积神经网络图像去噪
目录背影卷积神经网络CNN的原理卷积神经网络CNN的定义卷积神经网络CNN的神经元卷积神经网络CNN的激活函数卷积神经网络CNN的传递函数基于卷积神经网络的图像去噪完整代码:基于卷积神经网络的图像去噪.rar资源-CSDN文库https://download.csdn.net/download/abc991835105/88869565基本结构主要参数MATALB代码结果图展望背影卷积神经网络是为
- ReLU和ReLU6
chen_znn
激活函数pytorch深度学习人工智能计算机视觉
ReLU和ReLU6都是深度学习中常用的激活函数,它们各自有不同的优缺点。ReLU(RectifiedLinearUnit)优点非线性:ReLU是一个非线性函数,能够帮助神经网络学习复杂的模式和特征计算简单:ReLU函数的计算速度快,只需要判断输入是否大于零,因此在实践中被广泛采用解决梯度消失问题:相比于一些传统的激活函数,ReLU对梯度消失问题有一定的缓解作用缺点神经元死亡问题:当输入值为负时,
- 麻雀算法优化BP神经网络回归分析,麻雀算法优化BP神经网络回归预测,麻雀优化算法改进BP神经网络客流量预测
神经网络机器学习智能算法画图绘图
BP神经网络算法神经网络回归麻雀优化算法改进BP神经网络短期客流量预测
目录背影BP神经网络的原理BP神经网络的定义BP神经网络的基本结构BP神经网络的神经元BP神经网络的激活函数,BP神经网络的传递函数麻雀算法原理麻雀算法主要参数麻雀算法流程图麻雀算法优化测试函数代码麻雀算法优化BP神经网络回归分析,麻雀算法优化BP神经网络回归预测数据matlab编程实现效果图结果分析展望完整代码数据文件下载链接:(代码完整,数据齐全)资源-CSDN文库https://downlo
- 概率密度函数(PDF)与神经网络中的激活函数
daode3056
神经网络算法pdf人工智能机器学习算法
原创:项道德(daode3056,daode1212)在量子力学中,许多现象都是统计的结果,基本上用的是正态分布,然而,从本质上思考,应该还存在低阶的分布,标准的正态分布是它的极限,这样一来,或许在某些状态,要多关注瞬间与低能的统计分布,这就要推出一些低阶的分布,些分布大多都要出现特殊函数,先看看Besselfunction:以下是作者应用“第二类虚宗量的贝塞尔函数”的积分:它也代表一类分布,它是
- xml解析
小猪猪08
xml
1、DOM解析的步奏
准备工作:
1.创建DocumentBuilderFactory的对象
2.创建DocumentBuilder对象
3.通过DocumentBuilder对象的parse(String fileName)方法解析xml文件
4.通过Document的getElem
- 每个开发人员都需要了解的一个SQL技巧
brotherlamp
linuxlinux视频linux教程linux自学linux资料
对于数据过滤而言CHECK约束已经算是相当不错了。然而它仍存在一些缺陷,比如说它们是应用到表上面的,但有的时候你可能希望指定一条约束,而它只在特定条件下才生效。
使用SQL标准的WITH CHECK OPTION子句就能完成这点,至少Oracle和SQL Server都实现了这个功能。下面是实现方式:
CREATE TABLE books (
id &
- Quartz——CronTrigger触发器
eksliang
quartzCronTrigger
转载请出自出处:http://eksliang.iteye.com/blog/2208295 一.概述
CronTrigger 能够提供比 SimpleTrigger 更有具体实际意义的调度方案,调度规则基于 Cron 表达式,CronTrigger 支持日历相关的重复时间间隔(比如每月第一个周一执行),而不是简单的周期时间间隔。 二.Cron表达式介绍 1)Cron表达式规则表
Quartz
- Informatica基础
18289753290
InformaticaMonitormanagerworkflowDesigner
1.
1)PowerCenter Designer:设计开发环境,定义源及目标数据结构;设计转换规则,生成ETL映射。
2)Workflow Manager:合理地实现复杂的ETL工作流,基于时间,事件的作业调度
3)Workflow Monitor:监控Workflow和Session运行情况,生成日志和报告
4)Repository Manager:
- linux下为程序创建启动和关闭的的sh文件,scrapyd为例
酷的飞上天空
scrapy
对于一些未提供service管理的程序 每次启动和关闭都要加上全部路径,想到可以做一个简单的启动和关闭控制的文件
下面以scrapy启动server为例,文件名为run.sh:
#端口号,根据此端口号确定PID
PORT=6800
#启动命令所在目录
HOME='/home/jmscra/scrapy/'
#查询出监听了PORT端口
- 人--自私与无私
永夜-极光
今天上毛概课,老师提出一个问题--人是自私的还是无私的,根源是什么?
从客观的角度来看,人有自私的行为,也有无私的
- Ubuntu安装NS-3 环境脚本
随便小屋
ubuntu
将附件下载下来之后解压,将解压后的文件ns3environment.sh复制到下载目录下(其实放在哪里都可以,就是为了和我下面的命令相统一)。输入命令:
sudo ./ns3environment.sh >>result
这样系统就自动安装ns3的环境,运行的结果在result文件中,如果提示
com
- 创业的简单感受
aijuans
创业的简单感受
2009年11月9日我进入a公司实习,2012年4月26日,我离开a公司,开始自己的创业之旅。
今天是2012年5月30日,我忽然很想谈谈自己创业一个月的感受。
当初离开边锋时,我就对自己说:“自己选择的路,就是跪着也要把他走完”,我也做好了心理准备,准备迎接一次次的困难。我这次走出来,不管成败
- 如何经营自己的独立人脉
aoyouzi
如何经营自己的独立人脉
独立人脉不是父母、亲戚的人脉,而是自己主动投入构造的人脉圈。“放长线,钓大鱼”,先行投入才能产生后续产出。 现在几乎做所有的事情都需要人脉。以银行柜员为例,需要拉储户,而其本质就是社会人脉,就是社交!很多人都说,人脉我不行,因为我爸不行、我妈不行、我姨不行、我舅不行……我谁谁谁都不行,怎么能建立人脉?我这里说的人脉,是你的独立人脉。 以一个普通的银行柜员
- JSP基础
百合不是茶
jsp注释隐式对象
1,JSP语句的声明
<%! 声明 %> 声明:这个就是提供java代码声明变量、方法等的场所。
表达式 <%= 表达式 %> 这个相当于赋值,可以在页面上显示表达式的结果,
程序代码段/小型指令 <% 程序代码片段 %>
2,JSP的注释
<!-- -->
- web.xml之session-config、mime-mapping
bijian1013
javaweb.xmlservletsession-configmime-mapping
session-config
1.定义:
<session-config>
<session-timeout>20</session-timeout>
</session-config>
2.作用:用于定义整个WEB站点session的有效期限,单位是分钟。
mime-mapping
1.定义:
<mime-m
- 互联网开放平台(1)
Bill_chen
互联网qq新浪微博百度腾讯
现在各互联网公司都推出了自己的开放平台供用户创造自己的应用,互联网的开放技术欣欣向荣,自己总结如下:
1.淘宝开放平台(TOP)
网址:http://open.taobao.com/
依赖淘宝强大的电子商务数据,将淘宝内部业务数据作为API开放出去,同时将外部ISV的应用引入进来。
目前TOP的三条主线:
TOP访问网站:open.taobao.com
ISV后台:my.open.ta
- 【MongoDB学习笔记九】MongoDB索引
bit1129
mongodb
索引
可以在任意列上建立索引
索引的构造和使用与传统关系型数据库几乎一样,适用于Oracle的索引优化技巧也适用于Mongodb
使用索引可以加快查询,但同时会降低修改,插入等的性能
内嵌文档照样可以建立使用索引
测试数据
var p1 = {
"name":"Jack",
"age&q
- JDBC常用API之外的总结
白糖_
jdbc
做JAVA的人玩JDBC肯定已经很熟练了,像DriverManager、Connection、ResultSet、Statement这些基本类大家肯定很常用啦,我不赘述那些诸如注册JDBC驱动、创建连接、获取数据集的API了,在这我介绍一些写框架时常用的API,大家共同学习吧。
ResultSetMetaData获取ResultSet对象的元数据信息
- apache VelocityEngine使用记录
bozch
VelocityEngine
VelocityEngine是一个模板引擎,能够基于模板生成指定的文件代码。
使用方法如下:
VelocityEngine engine = new VelocityEngine();// 定义模板引擎
Properties properties = new Properties();// 模板引擎属
- 编程之美-快速找出故障机器
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
public class TheLostID {
/*编程之美
假设一个机器仅存储一个标号为ID的记录,假设机器总量在10亿以下且ID是小于10亿的整数,假设每份数据保存两个备份,这样就有两个机器存储了同样的数据。
1.假设在某个时间得到一个数据文件ID的列表,是
- 关于Java中redirect与forward的区别
chenbowen00
javaservlet
在Servlet中两种实现:
forward方式:request.getRequestDispatcher(“/somePage.jsp”).forward(request, response);
redirect方式:response.sendRedirect(“/somePage.jsp”);
forward是服务器内部重定向,程序收到请求后重新定向到另一个程序,客户机并不知
- [信号与系统]人体最关键的两个信号节点
comsci
系统
如果把人体看做是一个带生物磁场的导体,那么这个导体有两个很重要的节点,第一个在头部,中医的名称叫做 百汇穴, 另外一个节点在腰部,中医的名称叫做 命门
如果要保护自己的脑部磁场不受到外界有害信号的攻击,最简单的
- oracle 存储过程执行权限
daizj
oracle存储过程权限执行者调用者
在数据库系统中存储过程是必不可少的利器,存储过程是预先编译好的为实现一个复杂功能的一段Sql语句集合。它的优点我就不多说了,说一下我碰到的问题吧。我在项目开发的过程中需要用存储过程来实现一个功能,其中涉及到判断一张表是否已经建立,没有建立就由存储过程来建立这张表。
CREATE OR REPLACE PROCEDURE TestProc
IS
fla
- 为mysql数据库建立索引
dengkane
mysql性能索引
前些时候,一位颇高级的程序员居然问我什么叫做索引,令我感到十分的惊奇,我想这绝不会是沧海一粟,因为有成千上万的开发者(可能大部分是使用MySQL的)都没有受过有关数据库的正规培训,尽管他们都为客户做过一些开发,但却对如何为数据库建立适当的索引所知较少,因此我起了写一篇相关文章的念头。 最普通的情况,是为出现在where子句的字段建一个索引。为方便讲述,我们先建立一个如下的表。
- 学习C语言常见误区 如何看懂一个程序 如何掌握一个程序以及几个小题目示例
dcj3sjt126com
c算法
如果看懂一个程序,分三步
1、流程
2、每个语句的功能
3、试数
如何学习一些小算法的程序
尝试自己去编程解决它,大部分人都自己无法解决
如果解决不了就看答案
关键是把答案看懂,这个是要花很大的精力,也是我们学习的重点
看懂之后尝试自己去修改程序,并且知道修改之后程序的不同输出结果的含义
照着答案去敲
调试错误
- centos6.3安装php5.4报错
dcj3sjt126com
centos6
报错内容如下:
Resolving Dependencies
--> Running transaction check
---> Package php54w.x86_64 0:5.4.38-1.w6 will be installed
--> Processing Dependency: php54w-common(x86-64) = 5.4.38-1.w6 for
- JSONP请求
flyer0126
jsonp
使用jsonp不能发起POST请求。
It is not possible to make a JSONP POST request.
JSONP works by creating a <script> tag that executes Javascript from a different domain; it is not pos
- Spring Security(03)——核心类简介
234390216
Authentication
核心类简介
目录
1.1 Authentication
1.2 SecurityContextHolder
1.3 AuthenticationManager和AuthenticationProvider
1.3.1 &nb
- 在CentOS上部署JAVA服务
java--hhf
javajdkcentosJava服务
本文将介绍如何在CentOS上运行Java Web服务,其中将包括如何搭建JAVA运行环境、如何开启端口号、如何使得服务在命令执行窗口关闭后依旧运行
第一步:卸载旧Linux自带的JDK
①查看本机JDK版本
java -version
结果如下
java version "1.6.0"
- oracle、sqlserver、mysql常用函数对比[to_char、to_number、to_date]
ldzyz007
oraclemysqlSQL Server
oracle &n
- 记Protocol Oriented Programming in Swift of WWDC 2015
ningandjin
protocolWWDC 2015Swift2.0
其实最先朋友让我就这个题目写篇文章的时候,我是拒绝的,因为觉得苹果就是在炒冷饭, 把已经流行了数十年的OOP中的“面向接口编程”还拿来讲,看完整个Session之后呢,虽然还是觉得在炒冷饭,但是毕竟还是加了蛋的,有些东西还是值得说说的。
通常谈到面向接口编程,其主要作用是把系统设计和具体实现分离开,让系统的每个部分都可以在不影响别的部分的情况下,改变自身的具体实现。接口的设计就反映了系统
- 搭建 CentOS 6 服务器(15) - Keepalived、HAProxy、LVS
rensanning
keepalived
(一)Keepalived
(1)安装
# cd /usr/local/src
# wget http://www.keepalived.org/software/keepalived-1.2.15.tar.gz
# tar zxvf keepalived-1.2.15.tar.gz
# cd keepalived-1.2.15
# ./configure
# make &a
- ORACLE数据库SCN和时间的互相转换
tomcat_oracle
oraclesql
SCN(System Change Number 简称 SCN)是当Oracle数据库更新后,由DBMS自动维护去累积递增的一个数字,可以理解成ORACLE数据库的时间戳,从ORACLE 10G开始,提供了函数可以实现SCN和时间进行相互转换;
用途:在进行数据库的还原和利用数据库的闪回功能时,进行SCN和时间的转换就变的非常必要了;
操作方法: 1、通过dbms_f
- Spring MVC 方法注解拦截器
xp9802
spring mvc
应用场景,在方法级别对本次调用进行鉴权,如api接口中有个用户唯一标示accessToken,对于有accessToken的每次请求可以在方法加一个拦截器,获得本次请求的用户,存放到request或者session域。
python中,之前在python flask中可以使用装饰器来对方法进行预处理,进行权限处理
先看一个实例,使用@access_required拦截:
?