- 洛谷P2865 [USACO06NOV] Roadblocks G【C++解法】【次短路问题】
#Dong#
c++算法数据结构图论
/*求次短路问题【spfa解法】本题思路:1.用spfa做,用d1记录从1到n所有点距离点1的最短距离,用d2记录从n到1所有点距离点n的最短距离那么此时d1[n]即为1到n点的最短距离2.遍历每个顶点x,找到它们所指向的点y,利用d1[x](x距离1的最短距离)+d2[y](y距·离n的最短距离)+w[i](x和y的边的权值)因为次短路一定严格大于最短路,而且又是除了最短路以外最小的那个,所以利
- P2865 [USACO06NOV] Roadblocks G(洛谷)(次短路)
叶子清不青
算法
开一个二维数组dis[N][2]分别记录最短路和次短路即可。dijkstra和spfa均可,推荐spfa。//dijkstra#includeusingnamespacestd;constintN=1e5+5;typedeflonglongll;typedefpairPII;intn,m,k;intT;priority_queue,greater>q;structnode{inte,w;};vec
- python带空格的路径_使用带空格的路径调用脚本
weixin_39729784
python带空格的路径
我有一个GUI,并且正在使用一个按钮来调用python脚本。我pythonos.path.abspath(os.path.dirname(__file__))用来获取GUI脚本的目录,并进一步使用它来调用该目录的子文件夹中的脚本。我使用以下方法获取GUI的路径:sPfad=os.path.abspath(os.path.dirname(__file__))print(sPfad)T:\kst597
- DAY60-图论-Bellman_ford
No.Ada
LeetCode刷题手册图论
Bellman_ford队列优化算法(又名SPFA)publicstaticvoidmain(String[]args){Scannerscan=newScanner(System.in);intn=scan.nextInt();intm=scan.nextInt();//初始化List>edges=newArrayListtemp=newArrayListqueue=newLinkedListt
- 2022-01-14每日刷题打卡
你好_Ä
图论算法
2022-01-14每日刷题打卡AcWing——y总算法课851.spfa求最短路-AcWing题库给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。请你求出1号点到n号点的最短距离,如果无法从1号点走到n号点,则输出impossible。数据保证不存在负权回路。输入格式第一行包含整数n和m。接下来m行每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。输出
- 刷题Day64|Floyd 算法精讲:97. 小明逛公园、A * 算法精讲:127. 骑士的攻击
风啊雨
算法
Floyd算法精讲解决多源最短路问题,即求多个起点到多个终点的多条最短路径。dijkstra朴素版、dijkstra堆优化、Bellman算法、Bellman队列优化(SPFA)都是单源最短路,即只能有一个起点。Floyd算法对边的权值正负没有要求,都可以处理。思路:核心思想是动态规划。分两种情况:(1)节点i到节点j的最短路径经过节点k:grid[i][j][k]=grid[i][k][k-1]
- 代码随想录算法训练营Day61 || 图论part 10
傲世尊
图论
Bellman_ford队列优化算法:又叫做SPFA,在做松弛操作时,只更新以目前操作节点为出发点能到达的节点的minDist,避免多余操作。判断负权回路:如果有负权回路,进行第n次松弛的时候,minDist数组会有变化。最多经过k个城市,那么就对所有边进行k+1次松弛即可。
- Dijkstra算法C++
江淮子弟
算法刷刷刷算法c++图论数据结构贪心算法
系列文章目录Dijkstra算法Ballman_ford算法Spfa算法Floyd算法文章目录系列文章目录一、朴素版本二、堆优化版本总结一、朴素版本时间复杂度:$O(n^2)$数据量比较密集时:数据存储用邻接矩阵g[][]较大值MAX选用0x3f3f3f3f:32bit中通常int最大值为0x7fffffff,但是此处需要对MAX进行加法,0x7fffffff+3为负数,显然不符合最短路径算法中的
- 算法基础系列第三章——图论之最短路径问题
杨枝
算法基础图论算法dijkstrabellman–fordalgorithm
详解蓝桥图论之最短路径问题关于图论知识铺垫图的定义邻接矩阵邻接表最短路算法总大纲dijkstra算法朴素版dijsktra算法(适用于稠密图)例题描述参考代码(C++版本)算法模板细节落实堆优化版dijkstra算法(适用于稀疏图)例题描述参考实现代码(C++版本)算法模板细节落实bellman-ford算法例题描述——有边数限制的最短路参考代码(C++版本)算法模板细节落实SPFA算法例题描述参
- 【备战蓝桥杯】 算法·每日一题(详解+多解)-- day11
苏州程序大白
365天大战算法算法蓝桥杯图论数据结构C++
【备战蓝桥杯】算法·每日一题(详解+多解)--day11✨博主介绍前言Dijkstra算法流程网络延迟时间解题思路Bellman-Ford算法流程K站内最便宜的航班解题思路SPFA算法K站内最便宜的航班解题思路具有最大概率的路径解题思路Floyd算法找到阈值距离内邻居数量最少的城市解题思路Johnson全源最短路径算法正确性证明解题思路点击直接资料领取✨博主介绍作者主页:苏州程序大白作者简介:CS
- 备战蓝桥杯—有边数限制的最短路 (bellman_ford+)——[AcWing]有边数限制的最短路
Joanh_Lan
备战蓝桥杯蓝桥杯图论算法acm竞赛
因为近期在学图,所以顺带的写一篇最短路的备战蓝桥杯文章。最短路(单源)所有边权都为正数有两种算法:1.朴素DijkstraO(n^2)2.堆优化的DijkstraO(mlogn)存在负权边有两种算法:1.Bellman-FordO(nm)2.SPFA一般O(m),最坏O(nm)今天,我来介绍一下Bellman-Ford(存在负权+有边数限制)存在负权且有边数限制——》Bellman-Ford(在我
- 课上题目代码
顾客言
c++图论最短路
dijkstra和spfa区别:dikstra是基于贪心的思想,每次选择最近的点去更新其它点,过后就不再访问。而在spfa算法中,只要有某个点的距离被更新了,就把它加到队列中,去更新其它点,所有每个点有被重复加入队列的可能。或者跟具体的说区别在于diikstra总是要找到dist最小的元素来作为父节点更新其他点,而不是直接取队头元素(当然如果是优先队列也是取队头元素):更新的顺序不同主要导致的差异
- 算法刷题day13
lijiachang030718
#算法刷题算法动态规划
目录引言一、蜗牛引言今天时间有点紧,只搞了一道题目,不过确实搞了三个小时,才搞完,主要是也有点晚了,也好累啊,不过也还是可以的,学了状态DP,把建图和spfa算法熟悉了一下,明天再接再厉。一、蜗牛标签:状态机DP思路1:这个因为还没学所以第一时间没有这个DP的概念就拿最短路做的,spfa算法过了两个数据(总共十个),然后其实没问题,就是图建的不太完善,建图是觉得每次传送结束都要回到x轴,现在觉得可
- 找负环(图论基础)
wa的一声哭了
图论SPFA图论springbootfastapidjangoflasknumpyspring
文章目录负环spfa找负环方法一方法二实际效果负环环内路径上的权值和为负。spfa找负环两种基本的方法统计每一个点的入队次数,如果一个点入队了n次,则说明存在负环统计当前每个点中的最短路中所包含的边数,如果当前某个点的最短路所包含的边数大于等于n,也说明存在负环实际上两种方法是等价的,都是判断是否路径包含n条边,nnn条边的话就有n+1n+1n+1个点用的更多的还是第二种方法。方法一cnt[x]:
- 最短路问题模版总结
Jared_devin
最短路问题Acwing算法c++图论数据结构宽度优先动态规划深度优先
目录思维导图Dijkstra(朴素)思路:代码如下:Dijkstra(堆优化)代码如下:Bellman-Ford思路:对于串联效应的解释:(也就是为什么需要备份数组)代码如下:SPFA思路:为什么和BF算法的判断不一样:代码如下:SPFA判负环思路:代码如下:Floyd编辑思路:代码如下:复习小结~~符号:n为点数,m为边数思维导图(来自y总)注:1.朴素Dijkstra适用于稠密图,堆优化Dij
- 2.13学习总结
啊这泪目了
学习
1.出差(Bleeman—ford)(spfa)(dijkstra)2.最小生成树(prim)(Kruskal)最短路问题:出差https://www.luogu.com.cn/problem/P8802题目描述AA国有�N个城市,编号为1…�1…N小明是编号为11的城市中一家公司的员工,今天突然接到了上级通知需要去编号为�N的城市出差。由于疫情原因,很多直达的交通方式暂时关闭,小明无法乘坐飞机直
- 【第二十二课】最短路:多源最短路floyd算法(acwing-852 spfa判断是否存在负环 / acwing-854 / c++代码)
爱写文章的小w
算法--学习笔记算法c++最短路
目录acwing-852代码如下一些解释acwing-854foyld算法思想代码如下一些解释acwing-852在spfa求最短路的算法基础上进行修改。代码如下#include#include#include#includeusingnamespacestd;constintN=2010,M=10010;intn,m;inth[N],e[M],ne[M],w[M],idx;intdist[N],
- 【第二十二课】最短路:bellman_ford / spfa算法 (acwing-851 / acwing-853 / c++代码)
爱写文章的小w
算法--学习笔记算法c++最短路
目录前言acwing-853bellman_ford算法的思想代码如下一些解释acwing-851spfa算法思想代码如下一些解释前言由于权重可以表示不同的度量,例如距离、时间、费用等,具体取决于问题的背景,因此会存在一些权值为负数的题目。也就是存在负权边的最短路问题。dijkstra算法由于每次都选择当前最短路径的节点进行扩展,并不能解决带有负权值的最短路问题。会存在如下图这样的问题根据dijk
- 图论 理论以及相关题目题解的小结
芋圆西米露
【图论】吸吸吸国宝镇帖目录【图论】理论题解【搜索】【并查集】【最小生成树】【最短路】【拓扑排序】【二叉树】【简单图】【最小割】理论图论入门一图论入门二图论入门三图论入门四图论入门五图论入门六图论入门七-最小生成树图论入门八-Kruskal算法图论入门九-Prim算法求最短路径的四种方法(Dijkstra,Floyd,Bellman-Ford,SPFA算法)并查集入门(普通并查集+带删除并查集+关系
- BZOJ 1975 SDOI2010 魔法猪学院 A*k短路
PoPoQQQ
可并堆BZOJA*BZOJBZOJ1975A-stark短路
题目大意:给定一个值E求起点到终点的最多条路径使长度之和不超过Ek短路的A*算法……每个点有一个估价函数=g[x]+h[x]其中g[x]是从源点出发已经走了的长度h[x]是从这个点到汇点的最短路首先先在反图上跑一遍SPFA求出每个点的h[x],然后将源点的g[x]+h[x]加入堆每次取出堆顶时将堆顶的g[x]向所连接的边扩展第k次取出汇点即是答案其中有一个剪枝就是当第k+1次取出某个点时不继续拓展
- 第三章 搜索与图论(二)(最短路)
一只程序媛li
蓝桥准备图论算法
一、最短路问题1、对于稠密图,由于朴素版的dijkstra算法与边数无关使用这种算法的复杂度较低。稀疏图用堆优化版的算法;单源最短路中存在负权边用SPFA算法通常较好;多源用floyd算法;难点:如何建图,抽象为最短路问题。二、朴素版dijkstra算法由于稠密图用这种算法,邻接矩阵存图,注意把g初始化为0x3f;st保存每个数组的状态,#include//849dijkstra最短路usingn
- WEB-HTTP协议
晗神
http网络协议网络网络安全web安全开发语言tcp/ip
一、概述工作在应用层,通过HTTP实现数据在internet上发生和接受。HTTP使用TCP协议二、URL统一资源定位符Eg:http://www.aaspfans.com:8080/news/index.asp?boardID=5&page=1#name协议部分+域名/ip地址+端口+虚拟目录+文件名+参数+锚部分三、HTTP:报文:开始行+首部+空行+主体请求报文:user-agent:maz
- OSPF的拓展配置
보고.싶다
网络
一:OSPF的拓展配置1:手工认证---OSPF邻居双方,发送的所有的数据报中包含认证信息,两边口令相同,则代表认证成功;不同,则认证失败,将影响邻居关系建立。2:接口认证[r1-GigabitEthernet0/0/0]ospfauthentication-modemd51cipher1234563:区域认证---本质还是接口认证,相当于,将一台设备在某个区域内所有激活的接口配置接口认证。[r4
- 2023年 HCIP-Datacom(H12-821)最新题库
IT考试认证
华为考试认证智能路由器网络
最新HCIP-Datacom(H12-821)完整题库请扫描上方二维码访问,持续更新中。1.关于OSPFAS-External-LSA说法正确的是:A.Netmask被设置全0B.LinkStateID被设置为目的网段地址C.AdvertisingRouter被设置为ASBR的RouterIDD.使用LinkStateID和AdvertisingRouter可以唯一标识一条AS-External-
- 第四章 图论(4):SPFA求负环、差分约束、LCA
路哞哞
算法笔记图论算法LCA
目录一、SPFA求负环1.0SPFA判断负环1.1虫洞1.2观光奶牛(spfa&&01分数规划)1.3单词环二、差分约束2.1糖果2.2区间2.3排队布局2.4雇佣收银员2.5再卖菜三、最近公共祖先(LCA)3.1祖孙询问(倍增法)3.2距离(Tarjan算法)3.3次小生成树3.4暗之连锁一、SPFA求负环一般会和01分数规划结合负环:一个环且环上所有权值之和小于零负环对最短路径的影响:如果在求
- AcWing 1170. 排队布局 题解(spfa求负环解决约束差分)
QingQingDE23
#负环图论图论算法
AcWing1170.排队布局这里要注意求的是最大值,所以要用最短路,建图的时候也是从大于号指向小于号大佬题解#includeusingnamespacestd;constintN=1010,M=3e4+10,INF=0x3f3f3f3f;intn,m;inth[N],e[M],ne[M],w[M],idx;intdist[N];boolst[N];intcnt[N];intq[N];voidad
- spfa处理差分约束
钊气蓬勃.
c++算法蓝桥杯
差分约束是一群不等关系然后求可行解或者最小值最大值的情况1.求最大值,用最短路,也就是符号要(a)>=(b)+cadd(b,a,c)2.求最小值,用最长路,也就是符号要(a)=b且b>=ax==2说明b>a则b>=a+1x==3说明a>=bx==4说明a>b则a>=b+1x==5说明b>=a因为保证每个小孩都有一个糖果,则每个小孩>=0+1#includeusingnamespacestd;con
- 负环与差分约束
「已注销」
ACM--图论
文章目录负环与差分约束1.基本概念、方法1.1负环1.1.1spfa判负环/正环1.1.2tarjan+缩点判断正环/负环1.1.3拓扑排序判断正环/负环1.2差分约束2.例题2.1负环/正环判定2.1.1spfa判断负环/正环2.1.2tarjan求scc+缩点判断正环/负环2.1.3拓扑排序判断正环/负环2.2差分约束2.2.1spfa差分约束2.2.2tarjan求scc+缩点+dp差分约束
- BZOJ1731: [Usaco2005 dec]Layout 排队布局 差分约束 spfa
Oakley_
BZOJ差分约束spfa
差分约束:最大距离最短路,最小距离最长路最短路的三角不等式:d[i]-d[j]j)物理意义:j,i之间的距离为D,而d[i]-d[j]一定=D(j>i)物理意义:j,i之间的距离为D,而d[i]-d[j]一定>=D,所以求得是最长路建图:j向i连接一条权值为D的边1.题目中说牛的顺序和编号顺序一致,即需要满足d[i]-d[i-1]>=0;转化一下d[i-1]-d[i]=d[x]+D;转化一下d[x
- bzoj1731 [Usaco2005 dec]Layout 排队布局(差分约束+spfa)
Icefox_zhx
bzoj差分约束最短路
这题我觉得应该先判有没有负环啊。。。如果1和n不连通,我们从1开始做spfa,如果n在一个负环中呢?我们就判断不到这个负环了啊。。我们会输出-2,可是我觉得应该是-1,根本不存在合法方案啊。。。迷。我先用dfs判负环的程序在bzoj上跑了2900+ms,可怕。。不判的话才20ms。。不过话说dfs版spfa判负环也不会慢这么多啊。。待我研究下。#include#include#includeusi
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&