开局一张图,内容全靠编,ip分片的处理过程使用的数据结构如上图所示。每各ipq结构体负责一个ip数据包的分片处理,每个ipfrag结构体代表一个ip数据包中的一个分片。全局指针ipqueue管理所有ip数据包的所有分片。
// 创建一个表示ip分片的结构体
static struct ipfrag *ip_frag_create(int offset, int end, struct sk_buff *skb, unsigned char *ptr)
{
struct ipfrag *fp;
fp = (struct ipfrag *) kmalloc(sizeof(struct ipfrag), GFP_ATOMIC);
if (fp == NULL)
{
printk("IP: frag_create: no memory left !\n");
return(NULL);
}
memset(fp, 0, sizeof(struct ipfrag));
/* Fill in the structure. */
fp->offset = offset; // ip分配的首字节在未分片数据中的偏移
fp->end = end; // 最后一个字节的偏移 + 1,即下一个分片的首字节偏移
fp->len = end - offset; // 分片长度
fp->skb = skb;
fp->ptr = ptr; // 指向分片的数据首地址
return(fp);
}
// 根据ip头找到分片队列的头指针
static struct ipq *ip_find(struct iphdr *iph)
{
struct ipq *qp;
struct ipq *qplast;
cli();
qplast = NULL;
for(qp = ipqueue; qp != NULL; qplast = qp, qp = qp->next)
{ // 对比ip头里的几个字段
if (iph->id== qp->iph->id && iph->saddr == qp->iph->saddr &&
iph->daddr == qp->iph->daddr && iph->protocol == qp->iph->protocol)
{ // 找到后重置计时器,在这删除,在ip_find外面新增一个计时
del_timer(&qp->timer); /* So it doesn't vanish on us. The timer will be reset anyway */
sti();
return(qp);
}
}
sti();
return(NULL);
}
// 释放ip分片队列
static void ip_free(struct ipq *qp)
{
struct ipfrag *fp;
struct ipfrag *xp;
/*
* Stop the timer for this entry.
*/
// 删除定时器
del_timer(&qp->timer);
/* Remove this entry from the "incomplete datagrams" queue. */
cli();
/*
被删除的节点前面没有节点说明他是第一个节点,因为不是循环链表,
修改首指针ipqueue指向被删除节点的下一个,如果下一个不为空,下一个节点的prev节点指向空,
因为这时候他为第一个节点。
*/
if (qp->prev == NULL)
{
ipqueue = qp->next;
if (ipqueue != NULL)
ipqueue->prev = NULL;
}
else
{
/*
被删除节点不是第一个节点,但可能是最后一个,
被删除节点的前一个节点的next指针指向被删除节点的下一个节点,
如果如果被删除节点的下一个节点不为空则他的prev指针执行被删除节点
前面的节点
*/
qp->prev->next = qp->next;
if (qp->next != NULL)
qp->next->prev = qp->prev;
}
/* Release all fragment data. */
fp = qp->fragments;
// 删除所有分片节点
while (fp != NULL)
{
xp = fp->next;
IS_SKB(fp->skb);
kfree_skb(fp->skb,FREE_READ);
kfree_s(fp, sizeof(struct ipfrag));
fp = xp;
}
// 删除mac头和ip头,8字节是icmp用的,存放传输层的前8个字节
/* Release the MAC header. */
kfree_s(qp->mac, qp->maclen);
/* Release the IP header. */
kfree_s(qp->iph, qp->ihlen + 8);
/* Finally, release the queue descriptor itself. */
kfree_s(qp, sizeof(struct ipq));
sti();
}
// 分片重组超时处理函数
static void ip_expire(unsigned long arg)
{
struct ipq *qp;
qp = (struct ipq *)arg;
/*
* Send an ICMP "Fragment Reassembly Timeout" message.
*/
ip_statistics.IpReasmTimeout++;
ip_statistics.IpReasmFails++;
/* This if is always true... shrug */
// 发送icmp超时报文
if(qp->fragments!=NULL)
icmp_send(qp->fragments->skb,ICMP_TIME_EXCEEDED,
ICMP_EXC_FRAGTIME, 0, qp->dev);
/*
* Nuke the fragment queue.
*/
// 释放分片队列
ip_free(qp);
}
// 创建一个队列用于重组分片
static struct ipq *ip_create(struct sk_buff *skb, struct iphdr *iph, struct device *dev)
{
struct ipq *qp;
int maclen;
int ihlen;
// 分片一个新的表示分片队列的节点
qp = (struct ipq *) kmalloc(sizeof(struct ipq), GFP_ATOMIC);
if (qp == NULL)
{
printk("IP: create: no memory left !\n");
return(NULL);
skb->dev = qp->dev;
}
memset(qp, 0, sizeof(struct ipq));
/*
* Allocate memory for the MAC header.
*
* FIXME: We have a maximum MAC address size limit and define
* elsewhere. We should use it here and avoid the 3 kmalloc() calls
*/
// mac头长度等于ip头减去mac头首地址
maclen = ((unsigned long) iph) - ((unsigned long) skb->data);
qp->mac = (unsigned char *) kmalloc(maclen, GFP_ATOMIC);
if (qp->mac == NULL)
{
printk("IP: create: no memory left !\n");
kfree_s(qp, sizeof(struct ipq));
return(NULL);
}
/*
* Allocate memory for the IP header (plus 8 octets for ICMP).
*/
// ip头长度由ip头字段得出,多分配8个字节给icmp
ihlen = (iph->ihl * sizeof(unsigned long));
qp->iph = (struct iphdr *) kmalloc(ihlen + 8, GFP_ATOMIC);
if (qp->iph == NULL)
{
printk("IP: create: no memory left !\n");
kfree_s(qp->mac, maclen);
kfree_s(qp, sizeof(struct ipq));
return(NULL);
}
/* Fill in the structure. */
// 把mac头内容复制到mac字段
memcpy(qp->mac, skb->data, maclen);
// 把ip头和传输层的8个字节复制到iph字段,8个字段的内容用于发送icmp报文时
memcpy(qp->iph, iph, ihlen + 8);
// 未分片的ip报文的总长度,未知,收到所有分片后重新赋值
qp->len = 0;
// 当前分片的ip头和mac头长度
qp->ihlen = ihlen;
qp->maclen = maclen;
qp->fragments = NULL;
qp->dev = dev;
/* Start a timer for this entry. */
// 开始计时,一定时间内还没收到所有分片则重组失败,发送icmp报文
qp->timer.expires = IP_FRAG_TIME; /* about 30 seconds */
qp->timer.data = (unsigned long) qp; /* pointer to queue */
qp->timer.function = ip_expire; /* expire function */
add_timer(&qp->timer);
/* Add this entry to the queue. */
qp->prev = NULL;
cli();
// 头插法插入分片重组的队列
qp->next = ipqueue;
// 如果当前新增的节点不是第一个节点则把当前第一个节点的prev指针指向新增的节点
if (qp->next != NULL)
qp->next->prev = qp;
//更新ipqueue指向新增的节点,新增节点是首节点
ipqueue = qp;
sti();
return(qp);
}
// 判断分片是否全部到达
static int ip_done(struct ipq *qp)
{
struct ipfrag *fp;
int offset;
/* Only possible if we received the final fragment. */
// 收到最后分片的时候会更新len字段,如果没有收到他就是初始化0,所以为0说明最后一个分片还没到达,直接返回未完成
if (qp->len == 0)
return(0);
// 走到这里说明全部分片已经到达
/* Check all fragment offsets to see if they connect. */
fp = qp->fragments;
offset = 0;
// 检查所有分片,每个分片时按照偏移从小到大排序的链表,因为每次分片节点到达时会插入相应的位置
while (fp != NULL)
{ /*
如果当前节点的偏移大于期待的偏移(即上一个节点的最后一个字节的偏移+1,由end字段表示),
说明有中间节点没到达,直接返回未完成
*/
if (fp->offset > offset)
return(0); /* fragment(s) missing */
offset = fp->end;
fp = fp->next;
}
/* All fragments are present. */
// 分片全部到达并且每个分片的字节连续则重组完成
return(1);
}
// 重组成功后构造完整的ip报文
static struct sk_buff *ip_glue(struct ipq *qp)
{
struct sk_buff *skb;
struct iphdr *iph;
struct ipfrag *fp;
unsigned char *ptr;
int count, len;
/*
* Allocate a new buffer for the datagram.
*/
// 整个包的长度等于mac头长度+ip头长度+数据长度
len = qp->maclen + qp->ihlen + qp->len;
// 分配新的skb
if ((skb = alloc_skb(len,GFP_ATOMIC)) == NULL)
{
ip_statistics.IpReasmFails++;
printk("IP: queue_glue: no memory for gluing queue 0x%X\n", (int) qp);
ip_free(qp);
return(NULL);
}
/* Fill in the basic details. */
// 这里应该是等于qp->len?
skb->len = (len - qp->maclen);
skb->h.raw = skb->data; // data字段指向新分配的内存首地址
skb->free = 1;
/* Copy the original MAC and IP headers into the new buffer. */
ptr = (unsigned char *) skb->h.raw;
memcpy(ptr, ((unsigned char *) qp->mac), qp->maclen); // 把mac头复制到新的内存
ptr += qp->maclen;
memcpy(ptr, ((unsigned char *) qp->iph), qp->ihlen); // 把ip头复制到新的内存
ptr += qp->ihlen; // 指向数据部分的首地址
skb->h.raw += qp->maclen;// 指向ip头首地址
count = 0;
/* Copy the data portions of all fragments into the new buffer. */
fp = qp->fragments;
// 开始复制数据部分
while(fp != NULL)
{ // 如果当前节点的数据长度+已经复制的内容长度大于skb->len则说明内容溢出了,丢弃该数据包
if(count+fp->len > skb->len)
{
printk("Invalid fragment list: Fragment over size.\n");
ip_free(qp);
kfree_skb(skb,FREE_WRITE);
ip_statistics.IpReasmFails++;
return NULL;
}
// 把分片中的数据复制到对应偏移的位置
memcpy((ptr + fp->offset), fp->ptr, fp->len);
// 已复制的数据长度
count += fp->len;
fp = fp->next;
}
/* We glued together all fragments, so remove the queue entry. */
ip_free(qp);// 数据复制完后可以释放分片队列了
/* Done with all fragments. Fixup the new IP header. */
iph = skb->h.iph; // 上面的raw字段指向了ip头首地址,skb->h.iph等价于raw字段的值
iph->frag_off = 0; // 清除分片字段
// 更新总长度为ip头+数据的长度
iph->tot_len = htons((iph->ihl * sizeof(unsigned long)) + count);
skb->ip_hdr = iph;
ip_statistics.IpReasmOKs++;
return(skb);
}
// 处理分片报文
static struct sk_buff *ip_defrag(struct iphdr *iph, struct sk_buff *skb, struct device *dev)
{
struct ipfrag *prev, *next;
struct ipfrag *tfp;
struct ipq *qp;
struct sk_buff *skb2;
unsigned char *ptr;
int flags, offset;
int i, ihl, end;
ip_statistics.IpReasmReqds++;
/* Find the entry of this IP datagram in the "incomplete datagrams" queue. */
qp = ip_find(iph); // 根据ip头找是否已经存在分片队列
/* Is this a non-fragmented datagram? */
offset = ntohs(iph->frag_off);
flags = offset & ~IP_OFFSET; // 取得三个分片标记位
offset &= IP_OFFSET; // 取得分片偏移
// 如果没有更多分片了,并且offset=0(第一个分片),则属于出错,第一个分片后面肯定还有分片,否则干嘛要分片
if (((flags & IP_MF) == 0) && (offset == 0))
{
if (qp != NULL)
ip_free(qp); /* Huh? How could this exist?? */
return(skb);
}
// 偏移乘以8得到数据的真实偏移
offset <<= 3; /* offset is in 8-byte chunks */
/*
* If the queue already existed, keep restarting its timer as long
* as we still are receiving fragments. Otherwise, create a fresh
* queue entry.
*/
/*
如果已经存在分片队列,说明之前已经有分片到达,重置计时器,所以超时的逻辑是,
如果IP_FRAG_TIME时间内没有分片到达,则认为重组超时,这里没有以总时间来判断。
*/
if (qp != NULL)
{
del_timer(&qp->timer);
qp->timer.expires = IP_FRAG_TIME; /* about 30 seconds */
qp->timer.data = (unsigned long) qp; /* pointer to queue */
qp->timer.function = ip_expire; /* expire function */
add_timer(&qp->timer);
}
else
{
/*
* If we failed to create it, then discard the frame
*/
// 新建一个管理分片队列的节点
if ((qp = ip_create(skb, iph, dev)) == NULL)
{
skb->sk = NULL;
kfree_skb(skb, FREE_READ);
ip_statistics.IpReasmFails++;
return NULL;
}
}
/*
* Determine the position of this fragment.
*/
// ip头长度
ihl = (iph->ihl * sizeof(unsigned long));
// 偏移+数据部分长度等于end,end的值是最后一个字节+1
end = offset + ntohs(iph->tot_len) - ihl;
/*
* Point into the IP datagram 'data' part.
*/
// data指向整个报文首地址,即mac头首地址,ptr指向ip报文的数据部分
ptr = skb->data + dev->hard_header_len + ihl;
/*
* Is this the final fragment?
*/
// 是否是最后一个分片,是的话,未分片的ip报文长度为end,即最后一个报文的最后一个字节的偏移+1,因为偏移从0算起
if ((flags & IP_MF) == 0)
qp->len = end;
/*
* Find out which fragments are in front and at the back of us
* in the chain of fragments so far. We must know where to put
* this fragment, right?
*/
prev = NULL;
// 插入分片队列相应的位置,保证分片的有序
for(next = qp->fragments; next != NULL; next = next->next)
{ // 找出第一个比当前分片偏移大的节点
if (next->offset > offset)
break; /* bingo! */
prev = next;
}
/*
* We found where to put this one.
* Check for overlap with preceding fragment, and, if needed,
* align things so that any overlaps are eliminated.
*/
// 处理分片重叠问题
/*
处理当前节点和前面节点的重叠问题,因为上面保证了offset >= prev->offset,
所以只需要比较当前节点的偏移和prev节点的end字段
*/
if (prev != NULL && offset < prev->end)
{
// 说明存在重叠,算出重叠的大小,把当前节点的重叠部分丢弃,更新offset和ptr指针往前走,没处理完全重叠的情况
i = prev->end - offset;
offset += i; /* ptr into datagram */
ptr += i; /* ptr into fragment data */
}
/*
* Look for overlap with succeeding segments.
* If we can merge fragments, do it.
*/
// 处理当前节点和后面节点的重叠问题
for(; next != NULL; next = tfp)
{
tfp = next->next;
// 当前节点及其后面的节点都不会发生重叠了
if (next->offset >= end)
break; /* no overlaps at all */
// 反之发生了重叠,算出重叠大小
i = end - next->offset; /* overlap is 'i' bytes */
// 更新和当前节点重叠的节点的字段,往后挪
next->len -= i; /* so reduce size of */
next->offset += i; /* next fragment */
next->ptr += i;
/*
* If we get a frag size of <= 0, remove it and the packet
* that it goes with.
*/
// 发生了完全重叠,则删除旧的节点
if (next->len <= 0)
{
if (next->prev != NULL)
next->prev->next = next->next;// 说明旧节点不是第一个节点
else
qp->fragments = next->next;// 说明旧节点是第一个节点
// 这里应该是tfp !=NULL ?
if (tfp->next != NULL)
next->next->prev = next->prev;
kfree_skb(next->skb,FREE_READ);
kfree_s(next, sizeof(struct ipfrag));
}
}
/*
* Insert this fragment in the chain of fragments.
*/
tfp = NULL;
// 创建一个分片节点
tfp = ip_frag_create(offset, end, skb, ptr);
/*
* No memory to save the fragment - so throw the lot
*/
if (!tfp)
{
skb->sk = NULL;
kfree_skb(skb, FREE_READ);
return NULL;
}
// 插入分片队列
tfp->prev = prev;
tfp->next = next;
if (prev != NULL)
prev->next = tfp;
else
qp->fragments = tfp;
if (next != NULL)
next->prev = tfp;
/*
* OK, so we inserted this new fragment into the chain.
* Check if we now have a full IP datagram which we can
* bump up to the IP layer...
*/
// 判断全部分片是否到达,是的话重组
if (ip_done(qp))
{
skb2 = ip_glue(qp); /* glue together the fragments */
return(skb2);
}
return(NULL);
}
// ip分片处理,即发出去的ip包太大需要分片
void ip_fragment(struct sock *sk, struct sk_buff *skb, struct device *dev, int is_frag)
{
struct iphdr *iph;
unsigned char *raw;
unsigned char *ptr;
struct sk_buff *skb2;
int left, mtu, hlen, len;
int offset;
unsigned long flags;
/*
* Point into the IP datagram header.
*/
// mac首地址
raw = skb->data;
// ip头首地址
iph = (struct iphdr *) (raw + dev->hard_header_len);
skb->ip_hdr = iph;
/*
* Setup starting values.
*/
hlen = (iph->ihl * sizeof(unsigned long));
// 算出ip报文的数据长度
left = ntohs(iph->tot_len) - hlen; /* Space per frame */
hlen += dev->hard_header_len; /* Total header size */
// 每个分片的数据部分长度等于mac层的mtu减去mac头和ip头
mtu = (dev->mtu - hlen); /* Size of data space */
// 数据部分首地址
ptr = (raw + hlen); /* Where to start from */
/*
* Check for any "DF" flag. [DF means do not fragment]
*/
// 设置了不能分片则发送icmp报文
if (ntohs(iph->frag_off) & IP_DF)
{
/*
* Reply giving the MTU of the failed hop.
*/
ip_statistics.IpFragFails++;
icmp_send(skb,ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, dev->mtu, dev);
return;
}
/*
* The protocol doesn't seem to say what to do in the case that the
* frame + options doesn't fit the mtu. As it used to fall down dead
* in this case we were fortunate it didn't happen
*/
// mac头的mtu小于8则直接返回,因为报文数据部分至少8个字节
if(mtu<8)
{
/* It's wrong but it's better than nothing */
icmp_send(skb,ICMP_DEST_UNREACH,ICMP_FRAG_NEEDED,dev->mtu, dev);
ip_statistics.IpFragFails++;
return;
}
// 该ip报文本身就是一个分片,现在需要进行再次分片,偏移的首地址是该报文的首地址乘以8
if (is_frag & 2)
offset = (ntohs(iph->frag_off) & 0x1fff) << 3;
else
offset = 0;
/*
* Keep copying data until we run out.
*/
// 开始分片
while(left > 0)
{
len = left;
/* IF: it doesn't fit, use 'mtu' - the data space left */
// 大于mtu则继续分片,否则就是最后一个分片
if (len > mtu)
len = mtu;
/* IF: we are not sending upto and including the packet end
then align the next start on an eight byte boundary */
// 剩下的字节比mtu大的时候下面的判断会成立,则取8的倍数大小,不一定等于mtu
if (len < left)
{
len/=8;
len*=8;
}
/*
* Allocate buffer.
*/
// 分片新的skb,大小为mac头+ip头+数据部分长度
if ((skb2 = alloc_skb(len + hlen,GFP_ATOMIC)) == NULL)
{
printk("IP: frag: no memory for new fragment!\n");
ip_statistics.IpFragFails++;
return;
}
/*
* Set up data on packet
*/
skb2->arp = skb->arp;
if(skb->free==0)
printk("IP fragmenter: BUG free!=1 in fragmenter\n");
skb2->free = 1;
skb2->len = len + hlen;
skb2->h.raw=(char *) skb2->data;
/*
* Charge the memory for the fragment to any owner
* it might possess
*/
save_flags(flags);
if (sk)
{
cli();
sk->wmem_alloc += skb2->mem_len;
skb2->sk=sk;
}
restore_flags(flags);
skb2->raddr = skb->raddr; /* For rebuild_header - must be here */
/*
* Copy the packet header into the new buffer.
*/
// 把mac报头和ip报头+选项都复制到skb中,选项应该只复制到第一个分片
memcpy(skb2->h.raw, raw, hlen);
/*
* Copy a block of the IP datagram.
*/
// 复制数据部分,长度为len,ptr指向原ip报文的首地址,
memcpy(skb2->h.raw + hlen, ptr, len);
left -= len;
// 指向ip头首地址
skb2->h.raw+=dev->hard_header_len;
/*
* Fill in the new header fields.
*/
iph = (struct iphdr *)(skb2->h.raw/*+dev->hard_header_len*/);
// 设置该分配的偏移
iph->frag_off = htons((offset >> 3));
/*
* Added AC : If we are fragmenting a fragment thats not the
* last fragment then keep MF on each bit
*/
/*
1. 还有数据
2. 再分片的时候,该分片本身设置了分片flag,如果left大于MF置1,
如果left=0,需要看原报文是否设置了MF,如果有,说明原报文后面还有报文,
所以原报文下的所有分片MF都是1,如果原报文是最后一个报文,则MF=0,那对原报文分片的时候,
最后一个分片的MF=0,其他的为1
*/
if (left > 0 || (is_frag & 1))
iph->frag_off |= htons(IP_MF);
// 更新数据指针和偏移
ptr += len;
offset += len;
/*
* Put this fragment into the sending queue.
*/
ip_statistics.IpFragCreates++;
// 发送分片
ip_queue_xmit(sk, dev, skb2, 2);
}
ip_statistics.IpFragOKs++;
}
ip层接收到链路层的数据包后,根据ip头的字段判断是否是分片或者是不是第一个分片,然后使用上面的几个函数和定时器的功能完成分配重组。ip层往外发送数据的时候,如果数据包太大则使用ip_fragment函数进行分片,逐个分片发送出去。