- 第 4-2 课:MongoDB 常用命令
Java大联盟
案例上手Spring全家桶SpringSpringBootSpringCloudSpringMVCSpringSpringBootSpring
前言上节课我们已经成功搭建起来MongoDB服务器,本节课我们来介绍MongoDB数据库的常用命令。MongoDB的命令比传统SQL更加简便,使用起来更加方便,它的操作更贴近面向对象思想,这是因为MongoDB的存储结构是BSON格式,类似于JSON的一种数据格式,所以MongoDB操作起来非常灵活,不会像传统的关系型数据库那样有很多限制。我们要介绍的常用命令大致分为以下3种。对数据库的操作,包括
- Sharding-JDBC 实现分库分表
一叶飘零_sweeeet
java分布式mysqlSharding-JDBC分库分表javamysql
一、引言随着互联网业务的快速发展,数据量不断增长,传统的单一数据库架构已经难以满足高并发、大数据量的存储和查询需求。分库分表技术成为了解决这些问题的重要手段。Sharding-JDBC作为一款优秀的数据库中间件,能够方便地实现分库分表,提高系统的性能和可扩展性。本文将详细介绍Sharding-JDBC实现分库分表的实战过程。二、Sharding-JDBC概述(一)Sharding-JDBC的定义和
- 查看opencv版本信息
zhanghui9020
在VS2010中编写控制台C++程序:#include#include"cv.h"usingnamespacestd;main(){cout<<CV_VERSION;}运行即可打印安装的opencv的版本信息
- 深入浅出:CUDA是什么,如何利用它进行高效并行计算
码上飞扬
CUDA
在当今这个数据驱动的时代,计算能力的需求日益增加,特别是在深度学习、科学计算和图像处理等领域。为了满足这些需求,NVIDIA推出了CUDA(ComputeUnifiedDeviceArchitecture),这是一种并行计算平台和编程模型。本文将带你全面了解CUDA的基本概念、工作原理及其应用场景。一、什么是CUDA?CUDA(ComputeUnifiedDeviceArchitecture)是由
- 深度学习模型中的知识蒸馏是如何工作的?
c++服务器开发
深度学习人工智能
深度学习模型在多个领域,特别是计算机视觉和自然语言处理中,已经取得了革命性的进展。然而,随着模型复杂性和资源需求的不断攀升,如何将这些庞大模型的知识浓缩为更紧凑、更高效的形式,成为了当前研究的热点。知识蒸馏,作为一种将知识从复杂模型转移到更简单模型的策略,已经成为实现这一目标的有效工具。在本文中,我们将深入探究深度学习模型中知识蒸馏的概念、原理及其在各领域的应用,以期为读者提供一个全面而严谨的视角
- 吐血整理!权重持久化方案优化,让你的模型性能飙升
盼达思文体科创
经验分享
吐血整理!权重持久化方案优化,让你的模型性能飙升引言你是否在做深度学习项目时,遭遇过模型训练结果无法有效保存,导致之前的努力付诸东流的痛苦?又或者在模型权重持久化时,发现保存和加载的速度极慢,严重影响项目进度?今天咱们就来好好聊聊权重持久化方案的优化,帮你解决这些让人头疼的问题!核心内容❗传统方案痛点:大多数人都踩过的坑在很多深度学习项目里,大家常用的权重持久化方案存在不少问题。比如说,使用普通的
- Python从0到100(四):Python中的运算符介绍(补充)
是Dream呀
pythonjava数据库
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- Python从0到100(三十五):beautifulsoup的学习
是Dream呀
Dream的茶话会pythonbeautifulsoup学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 教程 | Ventoy全攻略:2025最新安装与使用教程,打造万能多系统启动盘
The god of big data
教程神器?三叉戟?虚拟系统系统架构
一、Ventoy简介与核心优势Ventoy是一款开源免费的多系统启动盘工具,支持Windows、Linux、macOS等操作系统及各类维护工具。其最大特点是无需反复格式化U盘,只需将ISO/WIM/IMG等镜像文件直接拷贝至U盘即可启动,且支持LegacyBIOS与UEFI双模式。相较于传统工具,Ventoy的优势包括:多系统兼容性:支持超1000种ISO镜像,涵盖主流操作系统及工具(如Windo
- 《深入浅出AI》前言知识:深度学习基础总结
GoAI
深入浅出AI人工智能深度学习机器学习cnnrnn生成对抗网络神经网络
个人主页:GoAI|公众号:GoAI的学习小屋|交流群:704932595|个人简介:掘金签约作者、百度飞桨PPDE、领航团团长、开源特训营导师、CSDN、阿里云社区人工智能领域博客专家、新星计划计算机视觉方向导师等,专注大数据与人工智能知识分享。AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成
- 函数式编程倡导的「不可变数据结构」如何保证性能
编程
在函数式编程(FunctionalProgramming,简称FP)中,不可变数据结构(ImmutableDataStructures)是一个核心概念。与传统的可变数据结构相比,不可变数据结构不可修改,而是通过创建新的数据结构来表达数据的变更。这一特点使得函数式编程能够简化并行计算、避免副作用,进而提高程序的可靠性和可维护性。然而,不可变数据结构可能带来的性能问题,例如内存的使用、数据复制的成本等
- 解密Python协程:提升并发编程效率的秘籍
爪哇抓挖_Java
日常python
在现代软件开发中,提升程序的执行效率和响应速度是每个开发者的追求。Python的协程是并发编程领域中的一个强大工具,能显著优化I/O密集型任务和高延迟操作的处理。本篇博客将详细介绍Python协程的工作原理和应用方法,通过具体的代码示例帮助开发者掌握这一技术。###Python协程简介协程,或称微线程,是一种用户态的轻量级线程,Python的协程通过`asyncio`库实现。与传统线程相比,协程在
- A new method for forward-looking scanning radar imaging based on L1/2 regularization 论文阅读
yangqoor
论文阅读
Anewmethodforforward-lookingscanningradarimagingbasedonL1/2regularization论文阅读内容概述关键创新点1.论文的研究目标研究目标2.新方法的特点与优势传统方法局限L1/2L_{1/2}L1/2正则化的创新优势对比3.实验设计与结果分析实验设置关键结果数据支持可借鉴的创新点与学习建议核心创新点推荐学习路径内容概述该论文提出了一种基
- 什么是BIO、NIO、AIO?
PLuto777_
niojavaaio
在高性能的IO体系设计中,BIO、NIO、AIO的概念,常常会让我们感到困惑不解。在Java面试中,我们也经常会被问到这个问题。譬如:BIO、NIO、AIO的概念同步/异步、阻塞/非阻塞的区别NIO如何实现多路复用功能BIOBIO全称是BlockingIO,是JDK1.4之前的传统IO模型,本身是同步阻塞模式。线程发起IO请求后,一直阻塞IO,直到缓冲区数据就绪后,再进入下一步操作。针对网络通信都
- python中的Pillow 有哪些常用的功能?
大懒猫软件
pillow计算机视觉人工智能python
Pillow的常用功能Pillow是一个强大的图像处理库,提供了丰富的功能来处理和操作图像。以下是一些常用的功能及其示例代码:1.打开和保存图像Pillow可以轻松地打开和保存各种格式的图像文件。示例代码Python复制fromPILimportImage#打开图像img=Image.open("example.jpg")#显示图像img.show()#保存图像img.save("output.j
- ️ 总览:TotalSegmentator - 医学影像分割的革新者
金斐茉
️总览:TotalSegmentator-医学影像分割的革新者TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator在医学图像处理领域中,精确且高效的自动分割工具对于研究和
- 探索TotalSegmentator:一款强大的全场景图像分割工具
计蕴斯Lowell
探索TotalSegmentator:一款强大的全场景图像分割工具项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目简介是一个开源的、基于深度学习的全场景图像分割框架。它由开发者Wasserth创建,旨在为医学影像分析、自动驾驶、遥感图像处理等多个领域提供高效且准确的像素级分类能力。该项目的亮点在于其模型的通用性和易用性,能够处理多种
- 对比度调整操作
weixin_51302377
深度学习人工智能计算机视觉算法
对比度调整是一种常见的图像处理操作,用于增强或减弱图像中不同颜色或亮度之间的差异,使图像的细节更加清晰或柔和。以下是关于对比度调整操作的详细介绍:原理对比度是指图像中最亮和最暗区域之间的差异程度。对比度调整通过改变图像中像素值的分布来实现。一般来说,增加对比度会使亮的部分更亮,暗的部分更暗,从而增强图像的层次感和细节;降低对比度则会使图像的亮度分布更加均匀,减少图像的层次感。在数学上,对比度调整通
- GPU通信革命:跨平面网络效率提升300%的秘密武器
CodePatentMaster
人工智能深度学习机器学习自然语言处理微服务服务器AIGC
「无需CPU中转,多平面网络RDMA通信时延降低50%」——Deepseek专利CN118612157A一、技术解析:突破AI算力瓶颈的底层创新1.技术背景:终结多平面网络CPU中转困境传统多平面网络中,跨平面GPU通信必须经过CPU内存拷贝,导致两大痛点:20-30%的通信带宽浪费在CPU中转环节大规模集群训练时,网络拥塞引发训练任务停滞该专利通过构建GPU直连通道,实现跨平面网络的零拷贝通信,
- Web开发中的可专利性分析:透过一个案例学习
CodePatentMaster
前端学习
Web开发工程师在创新过程中经常面临是否能申请专利并获得专利权的问题。本文通过一个详细的Web开发领域案例来阐释可专利性的分析过程。案例分析假设您是一名Web开发工程师,您开发了一种名为“动态响应式前端框架”(DynamicResponsiveFrontendFramework,DRFF)的新型前端框架。与传统前端框架相比,DRFF通过引入一种基于AI的组件化设计方法和实时数据流处理机制,显著提高
- 自然语言处理NLP 01语言转换&语言模型
伊一大数据&人工智能学习日志
自然语言处理自然语言处理人工智能语言模型nlp机器学习深度学习
目录语言转化方式1.数据预处理(DataPreprocessing)(1)文本清理(2)分词(3)语言特殊处理2.特征提取(FeatureExtraction)(1)词袋模型(BagofWords,BoW)(2)TF-IDF(3)词嵌入(WordEmbedding)3.模型输入(ModelInput)(1)序列编码(2)预训练模型输入4.模型推理(ModelInference)(1)使用传统模型(
- Python中的GIL锁详解
_Itachi__
pythonpython开发语言
Python中的GIL锁详解大家好,今天我们来聊聊Python中一个备受争议的话题——GIL锁(GlobalInterpreterLock,全局解释器锁)。GIL锁是Python解释器中的一个重要机制,但它对多线程程序的性能影响很大,尤其是在计算密集型任务(如图像处理)中。本文将从GIL锁的原理、影响以及如何在图像处理中规避GIL锁的角度,带大家彻底搞懂这个问题!1.什么是GIL锁?GIL锁是Py
- 从代码到专利:如何用自注意力机制实现高效序列转换?——深度解析Google的Transformer架构
CodePatentMaster
transformer深度学习人工智能AIGC架构
本文将从五个方面【技术问题、技术手段、技术效果、代码实现逻辑和工程落地建议】解读以下专利。US201816021971A,ATTENTION-BASEDSEQUENCETRANSDUCTIONNEURALNETWORKS一、技术问题:为什么需要自注意力机制?在传统的序列转换任务(如机器翻译、语音识别等)中,循环神经网络(RNN)和卷积神经网络(CNN)是常用的模型架构。然而,这些模型存在以下问题:
- Winograd 算法原理推导和python程序
weixin_47696437
算法python人工智能
一、算法背景Winograd算法是一种用于高效计算卷积的算法,其核心思想是通过减少乘法运算的次数来提高卷积计算的效率。在传统的卷积计算中,乘法运算的开销较大,而Winograd算法通过巧妙的变换,将卷积运算转化为在变换域中的矩阵乘法,从而减少乘法的数量,虽然会引入一些额外的加法和变换操作,但整体上在计算效率上有显著提升。二、一维卷积的Winograd推导2.Winograd优化通过多项式变换减少乘
- 量子计算威胁下Java应用的安全防护:技术剖析与实践
老猿讲编程
量子计算java安全
在科技飞速发展的当下,众多公司与研究团队全力投入实现量子霸权的研究,使得量子计算机超越传统计算机运算效率的未来愈发临近。量子计算虽蕴含着巨大的潜力,但也给现有加密体系带来了严峻挑战。一旦量子计算机具备破解当前加密算法的能力,大量基于现有加密技术保护的数据和通信都将面临风险,“先窃取,后解密”的攻击策略可能成为现实。在此背景下,Java应用如何构建有效的防御机制,抵御量子攻击,成为了亟待解决的关键问
- ACP科普:Sprint与Iteration的微妙共性
9命怪猫
敏捷开发sprint敏捷流程敏捷开发
在敏捷项目管理领域,Scrum框架无疑是一颗璀璨的明星。然而,对于刚踏入这个领域的新手来说,常常会对Scrum中的Sprint和迭代(Iteration)这两个概念感到困惑,不理解它们之间的区别。事实上,在实际应用中,二者几乎可以看作是同一回事。下面,猫哥将用通俗易懂的方式为大家揭开这两者的神秘面纱。项目如建楼,Sprint与Iteration是施工周期想象我们正在建造一座宏伟的大厦。在传统的项目
- 破局与重构:水务企业数字化转型路径探索
数据库人工智能数据挖掘
随着数字化技术的发展和智慧城市建设进程的推进,水务行业正经历以数据为驱动的深刻变革。本文深入探讨水务行业数字化发展的趋势、水务企业数字化转型的痛点、水务行业标杆企业数字化转型实践以及水务企业数字化转型的方向和路径,为水务企业十五五期间把握数字化机遇、实现高质量发展提供决策参考。一、水务行业数字化发展趋势随着国家新型智慧城市建设的推进,供水市场存在市场趋于饱和、市场过度分散、集约化程度低、传统供排水
- 海量日志接入 Serverless 应用降本70%以上
概述随着互联网业务的快速发展,日志数据量日益庞大,传统的日志处理方式面临着成本高、扩展性差等问题。为了应对这一挑战,越来越多的企业开始转向更先进的解决方案——阿里云ElasticsearchServerless。本文档将探讨在日志场景下,使用阿里云ElasticsearchServerless相较于基于ECS自建Elasticsearch集群的成本与性能优势,展示如何通过Serverless架构实
- 没有域名只有IP地址怎么申请https证书?
什么是IP地址SSL证书?通常情况下,SSL/TLS证书是通过域名来绑定的。也就是说,大多数证书颁发机构(CA)要求你拥有一个有效的域名(如example.com),并通过域名验证来申请证书。对于IP地址的情况,传统的SSL证书申请机制并不直接支持。这是因为证书主要依赖于域名解析来验证控制权。然而,随着一些企业需求的变化,某些证书颁发机构(CA)开始提供支持IP地址的SSL证书。这类证书不仅适用于
- 碳化硅(SiC)功率器件:新能源汽车的“心脏”革命与技术突围
天天爱吃肉8218
科普人工智能大数据
作为第三代宽禁带半导体材料,碳化硅(SiC)功率器件凭借其独特的物理特性,正在新能源汽车领域掀起一场效率与性能的革命。本文将从技术原理、应用表现、技术瓶颈及车企布局等角度,深度解析SiC如何重塑行业格局。一、SiC技术原理:材料特性决定性能天花板SiC功率器件的核心优势源于其材料特性,与传统的硅(Si)相比,具有以下颠覆性优势:1.高禁带宽度(3.26eV):电子更难被激发,器件耐高温、抗辐射能力
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙 alxw4616@Msn.com
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源