【C++11】lambda表达式 | 包装器

文章目录

  • 一.lambda表达式
    • 1.lambda表达式概念
    • 2.lambda表达式语法
    • 3.lambda表达式交换两个数
    • 4.lambda表达式底层原理
  • 二.包装器
    • 1.function包装器
      • ①function包装器介绍
      • ②function包装器统一类型
      • ③function包装器的意义
    • 2.bind包装器
      • ①bind包装器介绍
      • ②bind包装器绑定固定参数
      • ③bind包装器调整传参顺序
      • ④bind包装器的意义

一.lambda表达式

1.lambda表达式概念

ambda表达式是一个匿名函数,恰当使用lambda表达式可以让代码变得简洁,并且可以提高代码的可读性。

举个例子

商品类Goods的定义如下:

struct Goods
{
	string _name;  //名字
	double _price; //价格
	int _num;      //数量
};

现在要对若干商品分别按照价格和数量进行升序、降序排序。

  • 要对一个数据集合中的元素进行排序,可以使用sort函数,但由于这里待排序的元素为自定义类型,因此需要用户自行定义排序时的比较规则。
  • 要控制sort函数的比较方式常见的有两种方法,一种是对商品类的的()运算符进行重载,另一种是通过仿函数来指定比较的方式。
  • 显然通过重载商品类的()运算符是不可行的,因为这里要求分别按照价格和数量进行升序、降序排序,每次排序就去修改一下比较方式是很笨的做法。

所以这里选择传入仿函数来指定排序时的比较方式。比如:

struct ComparePriceLess
{
	bool operator()(const Goods& g1, const Goods& g2)
	{
		return g1._price < g2._price;
	}
};
struct ComparePriceGreater
{
	bool operator()(const Goods& g1, const Goods& g2)
	{
		return g1._price > g2._price;
	}
};
struct CompareNumLess
{
	bool operator()(const Goods& g1, const Goods& g2)
	{
		return g1._num < g2._num;
	}
};
struct CompareNumGreater
{
	bool operator()(const Goods& g1, const Goods& g2)
	{
		return g1._num > g2._num;
	}
};
int main()
{
	vector<Goods> v = { { "苹果", 2.1, 300 }, { "香蕉", 3.3, 100 }, { "橙子", 2.2, 1000 }, { "菠萝", 1.5, 1 } };
	sort(v.begin(), v.end(), ComparePriceLess());    //按价格升序排序
	sort(v.begin(), v.end(), ComparePriceGreater()); //按价格降序排序
	sort(v.begin(), v.end(), CompareNumLess());      //按数量升序排序
	sort(v.begin(), v.end(), CompareNumGreater());   //按数量降序排序
	return 0;
}

仿函数确实能够解决这里的问题,但可能仿函数的定义位置可能和使用仿函数的地方隔得比较远,这就要求仿函数的命名必须要通俗易懂,否则会降低代码的可读性。

对于这种场景就比较适合使用lambda表达式。比如:

int main()
{
	vector<Goods> v = { { "苹果", 2.1, 300 }, { "香蕉", 3.3, 100 }, { "橙子", 2.2, 1000 }, { "菠萝", 1.5, 1 } };
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._price < g2._price; 
	}); //按价格升序排序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._price > g2._price;
	}); //按价格降序排序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._num < g2._num;
	}); //按数量升序排序
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2)
	{
		return g1._num > g2._num;
	}); //按数量降序排序
	return 0;
}

这样一来,每次调用sort函数时只需要传入一个lambda表达式指明比较方式即可,阅读代码的人一看到lambda表达式就知道本次排序的比较方式是怎样的,提高了代码的可读性。

2.lambda表达式语法

lambda表达式书写格式:

[capture-list](parameters)mutable->return-type{statement}

lambda表达式各部分说明

  • [capture-list]:捕捉列表。该列表总是出现在lambda函数的开始位置,编译器根据[]来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用。
  • (parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略。
  • mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)。
  • ->return-type:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可以省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。
  • {statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。

lambda函数的参数列表和返回值类型都是可选部分,但捕捉列表和函数体是不可省略的,因此最简单的lambda函数如下:

int main()
{
	[]{}; //最简单的lambda表达式
	return 0;
}

该lambda函数不能做任何事情。

捕获列表说明

捕获列表描述了上下文中哪些数据可以被lambda函数使用,以及使用的方式是传值还是传引用。

  • [var]:表示值传递方式捕捉变量var。
  • [=]:表示值传递方式捕获所有父作用域中的变量(成员函数包括this指针)。
  • [&var]:表示引用传递捕捉变量var。
  • [&]:表示引用传递捕捉所有父作用域中的变量(成员函数包括this指针)。
  • [this]:表示值传递方式捕捉当前的this指针。

说明一下:

  • 父作用域指的是包含lambda函数的语句块。
  • 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。比如[=, &a, &b]
  • 捕捉列表不允许变量重复传递,否则会导致编译错误。比如[=, a]重复传递了变量a。
  • 在块作用域以外的lambda函数捕捉列表必须为空,即全局lambda函数的捕捉列表必须为空。
  • 在块作用域中的lambda函数仅能捕捉父作用域中的局部变量,捕捉任何非此作用域或者非局部变量都会导致编译报错。
  • lambda表达式之间不能相互赋值,即使看起来类型相同。

3.lambda表达式交换两个数

如果要用lambda表达式交换两个数,可以有以下几种写法:

标准写法

参数列表中包含两个形参,表示需要交换的两个数,注意需要以引用的方式传递。比如:

int main()
{
	int a = 10, b = 20;
	auto Swap = [](int& x, int& y)->void
	{
		int tmp = x;
		x = y;
		y = tmp;
	};
	Swap(a, b); //交换a和b
	return 0;
}

说明一下:

  • lambda表达式是一个匿名函数,该函数无法直接调用,如果想要直接调用,可借助auto将其赋值给一个变量,此时这个变量就可以像普通函数一样使用。
  • lambda表达式的函数体在格式上并不是必须写成一行,如果函数体太长可以进行换行,但换行后不要忘了函数体最后还有一个分号。

利用捕捉列表进行捕捉

以引用的方式捕捉所有父作用域中的变量,省略参数列表和返回值类型。比如:

int main()
{
	int a = 10, b = 20;
	auto Swap = [&]
	{
		int tmp = a;
		a = b;
		b = tmp;
	};
	Swap(); //交换a和b
	return 0;
}

这样一来,调用lambda表达式时就不用传入参数了,但实际我们只需要用到变量a和变量b,没有必要把父作用域中的所有变量都进行捕捉,因此也可以只对父作用域中的a、b变量进行捕捉。比如:

int main()
{
	int a = 10, b = 20;
	auto Swap = [&a, &b]
	{
		int tmp = a;
		a = b;
		b = tmp;
	};
	Swap(); //交换a和b
	return 0;
}

说明一下: 实际当我们以[&][=]的方式捕获变量时,编译器也不一定会把父作用域中所有的变量捕获进来,编译器可能只会对lambda表达式中用到的变量进行捕获,没有必要把用不到的变量也捕获进来,这个主要看编译器的具体实现。

传值方式捕捉?

如果以传值方式进行捕捉,那么首先编译不会通过,因为传值捕获到的变量默认是不可修改的,如果要取消其常量性,就需要在lambda表达式中加上mutable,并且此时参数列表不可省略。比如:

int main()
{
	int a = 10, b = 20;
	auto Swap = [a, b]()mutable
	{
		int tmp = a;
		a = b;
		b = tmp;
	};
	Swap(); //交换a和b?
	return 0;
}

但由于这里是传值捕捉,lambda函数中对a和b的修改不会影响外面的a、b变量,与函数的传值传参是一个道理,因此这种方法无法完成两个数的交换。

4.lambda表达式底层原理

lambda表达式的底层原理

实际编译器在底层对于lambda表达式的处理方式,完全就是按照函数对象的方式处理的。函数对象就是我们平常所说的仿函数,就是在类中对()运算符进行了重载的类对象。

下面编写了一个Add类,该类对()运算符进行了重载,因此Add类实例化出的add1对象就叫做函数对象,add1可以像函数一样使用。然后我们编写了一个lambda表达式,并借助auto将其赋值给add2对象,这时add1和add2都可以像普通函数一样使用。比如:

class Add
{
public:
	Add(int base)
		:_base(base)
	{}
	int operator()(int num)
	{
		return _base + num;
	}
private:
	int _base;
};
int main()
{
	int base = 1;

	//函数对象
	Add add1(base);
	add1(1000);

	//lambda表达式
	auto add2 = [base](int num)->int
	{
		return base + num;
	};
	add2(1000);
	return 0;
}

调试代码并转到反汇编,可以看到:

  • 在创建函数对象add1时,会调用Add类的构造函数。
  • 在使用函数对象add1时,会调用Add类的()运算符重载函数。

如下图:

【C++11】lambda表达式 | 包装器_第1张图片

观察lambda表达式时,也能看到类似的代码:

  • 借助auto将lambda表达式赋值给add2对象时,会调用类的构造函数。
  • 在使用add2对象时,会调用类的()运算符重载函数。

如下图:

【C++11】lambda表达式 | 包装器_第2张图片

本质就是因为lambda表达式在底层被转换成了仿函数。

  • 当我们定义一个lambda表达式后,编译器会自动生成一个类,在该类中对()运算符进行重载,实际lambda函数体的实现就是这个仿函数的operator()的实现。
  • 在调用lambda表达式时,参数列表和捕获列表的参数,最终都传递给了仿函数的operator()

lambda表达式和范围for是类似的,它们在语法层面上看起来都很神奇,但实际范围for底层就是通过迭代器实现的,lambda表达式底层的处理方式和函数对象是一样的。

lambda表达式之间不能相互赋值

lambda表达式之间不能相互赋值,就算是两个一模一样的lambda表达式。

  • 因为lambda表达式底层的处理方式和仿函数是一样的,在VS下,lambda表达式在底层会被处理为函数对象,该函数对象对应的类名叫做
  • 类名中的uuid叫做通用唯一识别码(Universally Unique Identifier),简单来说,uuid就是通过算法生成一串字符串,保证在当前程序当中每次生成的uuid都不会重复。
  • lambda表达式底层的类名包含uuid,这样就能保证每个lambda表达式底层类名都是唯一的。

因此每个lambda表达式的类型都是不同的,这也就是lambda表达式之间不能相互赋值的原因,我们可以通过typeid(变量名).name()的方式来获取lambda表达式的类型。比如:

int main()
{
	int a = 10, b = 20;
	auto Swap1 = [](int& x, int& y)->void
	{
		int tmp = x;
		x = y;
		y = tmp;
	};
	auto Swap2 = [](int& x, int& y)->void
	{
		int tmp = x;
		x = y;
		y = tmp;
	};
	cout << typeid(Swap1).name() << endl; //class 
	cout << typeid(Swap2).name() << endl; //class 
	return 0;
}

可以看到,就算是两个一模一样的lambda表达式,它们的类型都是不同的。

说明一下: 编译器只需要保证每个lambda表达式底层对应类的类名不同即可,并不是每个编译器都会将lambda表达式底层对应类的类名处理成,这里只是以VS为例。

二.包装器

1.function包装器

①function包装器介绍

function包装器

function是一种函数包装器,也叫做适配器。它可以对可调用对象进行包装,C++中的function本质就是一个类模板。

function类模板的原型如下:

template <class T> function;     // undefined
template <class Ret, class... Args>
class function<Ret(Args...)>;

模板参数说明:

  • Ret:被包装的可调用对象的返回值类型。
  • Args…:被包装的可调用对象的形参类型。

包装示例

function包装器可以对可调用对象进行包装,包括函数指针(函数名)、仿函数(函数对象)、lambda表达式、类的成员函数。比如:

int f(int a, int b)
{
	return a + b;
}
struct Functor
{
public:
	int operator()(int a, int b)
	{
		return a + b;
	}
};
class Plus
{
public:
	static int plusi(int a, int b)
	{
		return a + b;
	}
	double plusd(double a, double b)
	{
		return a + b;
	}
};
int main()
{
	//1、包装函数指针(函数名)
	function<int(int, int)> func1 = f;
	cout << func1(1, 2) << endl;

	//2、包装仿函数(函数对象)
	function<int(int, int)> func2 = Functor();
	cout << func2(1, 2) << endl;

	//3、包装lambda表达式
	function<int(int, int)> func3 = [](int a, int b){return a + b; };
	cout << func3(1, 2) << endl;

	//4、类的静态成员函数
	//function func4 = Plus::plusi;
	function<int(int, int)> func4 = &Plus::plusi; //&可省略
	cout << func4(1, 2) << endl;

	//5、类的非静态成员函数
	function<double(Plus, double, double)> func5 = &Plus::plusd; //&不可省略
	cout << func5(Plus(), 1.1, 2.2) << endl;
	return 0;
}

注意事项:

  • 包装时指明返回值类型和各形参类型,然后将可调用对象赋值给function包装器即可,包装后function对象就可以像普通函数一样使用了。
  • 取静态成员函数的地址可以不用取地址运算符“&”,但取非静态成员函数的地址必须使用取地址运算符“&”。
  • 包装非静态的成员函数时需要注意,非静态成员函数的第一个参数是隐藏this指针,因此在包装时需要指明第一个形参的类型为类的类型。

②function包装器统一类型

对于以下函数模板useF:

  • 传入该函数模板的第一个参数可以是任意的可调用对象,比如函数指针、仿函数、lambda表达式等。
  • useF中定义了静态变量count,并在每次调用时将count的值和地址进行了打印,可判断多次调用时调用的是否是同一个useF函数。

代码如下:

template<class F, class T>
T useF(F f, T x)
{
	static int count = 0;
	cout << "count: " << ++count << endl;
	cout << "count: " << &count << endl;

	return f(x);
}

在传入第二个参数类型相同的情况下,如果传入的可调用对象的类型是不同的,那么在编译阶段该函数模板就会被实例化多次。比如:

double f(double i)
{
	return i / 2;
}
struct Functor
{
	double operator()(double d)
	{
		return d / 3;
	}
};
int main()
{
	//函数指针
	cout << useF(f, 11.11) << endl;

	//仿函数
	cout << useF(Functor(), 11.11) << endl;

	//lambda表达式
	cout << useF([](double d)->double{return d / 4; }, 11.11) << endl;
	return 0;
}

由于函数指针、仿函数、lambda表达式是不同的类型,因此useF函数会被实例化出三份,三次调用useF函数所打印count的地址也是不同的。

  • 但实际这里根本没有必要实例化出三份useF函数,因为三次调用useF函数时传入的可调用对象虽然是不同类型的,但这三个可调用对象的返回值和形参类型都是相同的。
  • 这时就可以用包装器分别对着三个可调用对象进行包装,然后再用这三个包装后的可调用对象来调用useF函数,这时就只会实例化出一份useF函数。
  • 根本原因就是因为包装后,这三个可调用对象都是相同的function类型,因此最终只会实例化出一份useF函数,该函数的第一个模板参数的类型就是function类型的。

代码如下:

int main()
{
	//函数名
	function<double(double)> func1 = func;
	cout << useF(func1, 11.11) << endl;

	//函数对象
	function<double(double)> func2 = Functor();
	cout << useF(func2, 11.11) << endl;

	//lambda表达式
	function<double(double)> func3 = [](double d)->double{return d / 4; };
	cout << useF(func3, 11.11) << endl;
	return 0;
}

这时三次调用useF函数所打印count的地址就是相同的,并且count在三次调用后会被累加到3,表示这一个useF函数被调用了三次。

③function包装器的意义

  • 将可调用对象的类型进行统一,便于我们对其进行统一化管理。
  • 包装后明确了可调用对象的返回值和形参类型,更加方便使用者使用。

2.bind包装器

①bind包装器介绍

bind包装器

bind也是一种函数包装器,也叫做适配器。它可以接受一个可调用对象,生成一个新的可调用对象来“适应”原对象的参数列表,C++中的bind本质是一个函数模板。

bind函数模板的原型如下:

template <class Fn, class... Args>
/* unspecified */ bind(Fn&& fn, Args&&... args);
template <class Ret, class Fn, class... Args>
/* unspecified */ bind(Fn&& fn, Args&&... args);

模板参数说明:

  • fn:可调用对象。
  • args...:要绑定的参数列表:值或占位符。

调用bind的一般形式

调用bind的一般形式为:

auto newCallable = bind(callable, arg_list);

解释说明:

  • callable:需要包装的可调用对象。
  • newCallable:生成的新的可调用对象。
  • arg_list:逗号分隔的参数列表,对应给定的callable的参数。当newCallable时,newCallable会调用callable,并传给它arg_list中的参数。

arg_list中的参数可能包含形如_n的名字,其中n是一个整数,这些参数是“占位符”,表示newCallable的参数,它们占据了传递给newCallable的参数的“位置”。数值n表示生成的可调用对象中参数的位置,比如_1为newCallable的第一个参数,_2为第二个参数,以此类推。

此外,除了用auto接收包装后的可调用对象,也可以用function类型指明返回值和形参类型后接收包装后的可调用对象。

②bind包装器绑定固定参数

无意义的绑定

下面这种绑定就是无意义的绑定:

int Plus(int a, int b)
{
	return a + b;
}
int main()
{
	//无意义的绑定
	function<int(int, int)> func = bind(Plus, placeholders::_1, placeholders::_2);
	cout << func(1, 2) << endl; //3
	return 0;
}

绑定时第一个参数传入函数指针这个可调用对象,但后续传入的要绑定的参数列表依次是placeholders::_1和placeholders::_2,表示后续调用新生成的可调用对象时,传入的第一个参数传给placeholders::_1,传入的第二个参数传给placeholders::_2。此时绑定后生成的新的可调用对象的传参方式,和原来没有绑定的可调用对象是一样的,所以说这是一个无意义的绑定。

绑定固定参数

如果想把Plus函数的第二个参数固定绑定为10,可以在绑定时将参数列表的placeholders::_2设置为10。比如:

int Plus(int a, int b)
{
	return a + b;
}
int main()
{
	//绑定固定参数
	function<int(int)> func = bind(Plus, placeholders::_1, 10);
	cout << func(2) << endl; //12
	return 0;
}

此时调用绑定后新生成的可调用对象时就只需要传入一个参数,它会将该值与10相加后的结果进行返回。

③bind包装器调整传参顺序

调整传参顺序

对于下面Sub类中的sub成员函数,sub成员函数的第一个参数是隐藏的this指针,如果想要在调用sub成员函数时不用对象进行调用,那么可以将sub成员函数的第一个参数固定绑定为一个Sub对象。比如:

class Sub
{
public:
	int sub(int a, int b)
	{
		return a - b;
	}
};
int main()
{
	//绑定固定参数
	function<int(int, int)> func = bind(&Sub::sub, Sub(), placeholders::_1, placeholders::_2);
	cout << func(1, 2) << endl; //-1
	return 0;
}

此时调用绑定后生成的可调用对象时,就只需要传入用于相减的两个参数了,因为在调用时会固定帮我们传入一个匿名对象给this指针。

如果想要将sub成员函数用于相减的两个参数的顺序交换,那么直接在绑定时将placeholders::_1和placeholders::_2的位置交换一下就行了。比如:

class Sub
{
public:
	int sub(int a, int b)
	{
		return a - b;
	}
};
int main()
{
	//调整传参顺序
	function<int(int, int)> func = bind(&Sub::sub, Sub(), placeholders::_2, placeholders::_1);
	cout << func(1, 2) << endl; //1
	return 0;
}

根本原因就是因为,后续调用新生成的可调用对象时,传入的第一个参数会传给placeholders::_1,传入的第二个参数会传给placeholders::_2,因此可以在绑定时通过控制placeholders::_n的位置,来控制第n个参数的传递位置。

④bind包装器的意义

  • 将一个函数的某些参数绑定为固定的值,让我们在调用时可以不用传递某些参数。
  • 可以对函数参数的顺序进行灵活调整。

本文到此结束,码文不易,还请多多支持!!!

你可能感兴趣的:(C++学习,c++,算法,数据结构)