- 目标检测入门教程:使用Python实现目标检测算法
晨曦之光,优美芝麻
目标检测python算法机器学习-深度学习
目标检测是计算机视觉领域中的重要任务,它旨在识别和定位图像或视频中的特定对象。本教程将介绍如何使用Python编程语言实现目标检测算法。我们将使用一种广泛应用的目标检测算法——基于深度学习的单阶段检测器YOLO(YouOnlyLookOnce)的最新版本YOLOv4作为示例。在开始之前,请确保您已经安装了Python和以下必要的库:NumPy、OpenCV和PyTorch。您可以使用pip命令来安
- PyTorch 快速入门
無量空所
深度学习机器学习pytorch开源
我们将通过一个简单的示例,快速了解如何使用PyTorch进行机器学习任务。PyTorch是一个开源的机器学习库,它提供了丰富的工具和库,帮助我们轻松地构建、训练和测试神经网络模型。以下是本教程的主要内容:一、数据处理PyTorch提供了两个基本的数据处理工具:torch.utils.data.DataLoader和torch.utils.data.Dataset。Dataset用于存储样本及其对应
- 【Java】已解决:`java.lang.NoClassDefFoundError`
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 【Java】已解决java.lang.NoSuchMethodException异常
屿小夏
javapython开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- PennyLane: 探索量子计算的新里程
戴艺音
PennyLane:探索量子计算的新里程项目地址:https://gitcode.com/gh_mirrors/pe/pennylane项目简介是一个开源软件框架,专注于混合量子和经典计算。由PennyLaneAI团队开发,该项目提供了一个直观且灵活的方式来设计、训练和优化涉及量子硬件的机器学习模型。其目标是让研究人员和开发者能够轻松地在本地或云端的量子计算机上进行实验。技术分析PennyLane
- Deepseek两项关键发现:无需人类专家介入SFT、有自己
极道Jdon
javascriptreactjs
DeepseekR1-Zero关键两项发现:无需人类专家、有自己专业领域语言DSL,也就是没有SFT,有自己DSL!ARCPrize基金会对DeepSeek发布的R1-Zero和R1“推理”系统的分析。ARCPrize基金是谁?ARCPrize基金会旨在定义、衡量并激励新的AGI(通用人工智能)想法。目前尚未实现AGI,主流AI行业和公众普遍认为通过扩大纯语言模型(LLM)的预训练规模就能实现突破
- 杨立昆退休?中国Deepseek超Llama 4触发Meta
极道Jdon
javascriptreactjs
[昨天,人工智能领域发生了一些事情:杨立昆领导的Meta生成式人工智能部门(Metagenaiorg)陷入了恐慌模式。杨立昆是Meta(原Facebook)的首席人工智能科学家,同时也是纽约大学的教授。杨立昆因其在深度学习领域的开创性工作而获得了图灵奖(TuringAward),这是计算机科学领域的最高荣誉之一。恐慌模式始于DeepseekV3,它在性能测试中已经超过了Llama4。更让人尴尬的是
- Anaconda 虚拟环境 和 Python 虚拟环境 主要的区别
张biubiu
python开发语言
在PyCharm中配置Anaconda虚拟环境和Python虚拟环境主要的区别在于环境的管理方式和用途。下面我会分别解释这两种虚拟环境的特点,并说明它们的差异。1.Anaconda虚拟环境Anaconda是一个针对数据科学、机器学习等应用领域优化的Python发行版,它提供了Python、R和大量的科学计算和数据处理包(如NumPy、Pandas、SciPy、Matplotlib等)的集成,且方便
- 书生浦语第五期
晴斋1216
语言模型
基础作业完成以下任务,并将实现过程记录截图:配置lmdeploy运行环境下载internlm-chat-1.8b模型以命令行方式与模型对话视频链接文档链接基础知识学习模型部署在软件工程中,部署通常指的是将开发完毕的软件投入使用的过程。在人工智能领域,模型部署是实现深度学习算法落地应用的关键步骤。简单来说,模型部署就是将训练好的深度学习模型在特定环境中运行的过程。目前大模型部署面临的挑战计算量巨大内
- 【详细讲解】hive优化
songqq27
大数据hive
1、开启本地模式大多数的HadoopJob是需要Hadoop提供的完整的可扩展性来处理大数据集的。不过,有时Hive的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际job的执行时间要多的多。对于大多数这种情况,Hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。用户可以通过设置hive.exec.mode.local.auto的值
- 斯坦福吴恩达-深度学习和机器学习全套视频+课件!
Alexquyun
人工智能机器学习深度学习python
这些课程专为已有一定基础(基本的编程知识,熟悉Python、对机器学习有基本了解),想要尝试进入人工智能领域的计算机专业人士准备。介绍显示:“深度学习是科技业最热门的技能之一,本课程将帮你掌握深度学习。”学生将可以学习到深度学习的基础,学会构建神经网络,并用在包括吴恩达本人在内的多位业界顶尖专家指导下创建自己的机器学习项目。DeepLearningSpecialization对卷积神经网络(CNN
- Python从0到100(四十九):数据库设计及Django ORM使用
是Dream呀
python数据库django
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- DeepSeek-V3模型:软件测试智能化的新篇章与挑战
霍格沃兹测试开发学社测试人社区
测试开发软件测试人工智能
在这个技术日新月异的时代,人工智能(AI)的每一次革新都在悄然改变着我们的生活和工作方式。最近,DeepSeekAI公司推出的DeepSeek-V3模型,凭借其卓越的文本处理能力、高效的推理速度以及多任务处理能力,为软件测试行业带来了一场前所未有的智能化变革。今天,我们就来深入探讨一下DeepSeek-V3在软件测试中的应用以及它所面临的挑战。智能化测试的新篇章DeepSeek-V3模型在软件测试
- 自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合
辞落山
scikit-learn线性回归python
1.引言简要介绍线性回归模型及其在机器学习中的应用。2.创建自定义数据集通过生成一个简单的自定义数据集来模拟问题。可以使用numpy生成数据。importnumpyasnpimportmatplotlib.pyplotasplt#生成自定义数据np.random.seed(42)X=2*np.random.rand(100,1)y=4+3*X+np.random.randn(100,1)3.使用s
- TensorFlow 简介
九月十九
tensorflow人工智能python
TensorFlow是一个开源的机器学习框架,由Google开发。它提供了一个强大的工具集,用于构建和训练各种机器学习模型。TensorFlow的基本概念和使用场景包括:1.张量(Tensor):TensorFlow中的核心数据结构是张量,它是一个多维数组,可以表示标量、向量、矩阵等。2.计算图(Graph):TensorFlow使用计算图来表示机器学习模型的计算过程。计算图由一系列的操作节点和数
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
知识鱼丸
machinelearning逻辑回归算法机器学习
1.数据准备首先,我们需要一些示例数据。在这个例子中,我们将生成一些简单的二维数据点,并为其分配标签。2.定义逻辑回归模型接下来,我们定义一个简单的逻辑回归模型。3.训练模型定义损失函数和优化器,然后进行模型训练。4.保存模型训练完成后,我们可以保存模型的状态字典。5.加载模型并进行预测加载保存的模型,并进行预测。importtorchimporttorch.nnasnnimporttorch.o
- 使用numpy自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预
辞落山
numpytensorflow逻辑回归
1.引言逻辑回归(LogisticRegression)是一种常见的分类算法,广泛应用于二分类问题。在本篇博客中,我们将使用numpy生成一个简单的自定义数据集,并使用TensorFlow框架构建和训练逻辑回归模型。训练完成后,我们会保存模型,并演示如何加载保存的模型进行预测。2.创建自定义数据集首先,我们使用numpy生成一个简单的二分类数据集,包含两个特征和对应的标签。标签0表示负类,标签1表
- 分类算法:梯度提升树(GBT)算法原理
kkchenjj
数据挖掘机器学习算法分类数据挖掘
分类算法:梯度提升树(GBT)算法原理1.简介1.1梯度提升树的起源与发展梯度提升树(GradientBoostingTree,GBT)是一种强大的机器学习算法,它基于提升方法的原理,通过迭代地构建一系列弱分类器并组合它们来形成一个强分类器。GBT的起源可以追溯到Freund和Schapire在1996年提出的AdaBoost算法,但真正将梯度提升应用于树模型的是JeromeH.Friedman在
- 全面掌握 Java 排序算法:从原理到代码实现
中國移动丶移不动
排序算法java算法
全面掌握Java排序算法:从原理到代码实现一、基本概念排序算法用于将一组数据按指定顺序排列(通常是升序或降序)。在评估排序算法时,通常需要考虑以下几个方面:1.1什么是排序算法排序算法是一种对数据集合按照某种特定顺序进行重新排列的过程,主要应用在数据处理、查找优化等场景。1.2排序算法的评估标准时间复杂度:算法处理n个元素时所需的时间,例如O(n2)O(n^2)O(n2)表示随着输入量增长,处理时
- 中国大气湿度指数数据集(2003-2020)
地球资源数据云
服务器大数据数据库
该数据集收录了2003-2020年中国大气湿度指数数据集,其中主要包括常用的5个大气湿度指数:真是水汽压(AVP)、水汽压亏缺(VPD)、露点温度(DPT)、混合比(MR)以及比湿(SH)。为便于存储,数据都存储为整数类型(Int16),使用时需除以100将AVP、VPD、DPT、MR以及SH的数值单位分别转化为hPa、hPa、℃、g/kg以及g/kg。数据集主要以tiff的格式存储,时间分辨率为
- Python——基于ERA5数据的饱和水汽压差(VPD)批量计算(Clausius-Clapeyron 克劳修斯-克拉伯龙关系)
雨宫芳树
算法pythonarcgis数据分析开发语言
一、前言之前我发布过基于CRU数据和Goff-Gratch公式计算VPD的博客,见下方:基于CRU数据计算VPD的博客但是,CRU数据的分辨率还是较为粗糙(0.5°×0.5°),而ERA5land数据集分辨率能很好地满足我的需求(0.1°×0.1°)。但是,ERA5land数据集并不提供水汽压和湿度变量供于下载,这导致利用Goff-Gratch公式很难进行计算。结合近期文献阅读和整理,这里提供另一
- Day28(补)-【AI思考】-AI会不会考虑自己的需求?
一个一定要撑住的学习者
#AI深度思考学习方法人工智能大数据
文章目录AI会不会考虑自己的需求?一、**技术本质:深度≠理解**二、**传播机制:热搜如何制造幻觉**三、**伦理考量:为何必须"撇清"**关键结论AI会不会考虑自己的需求?让思想碎片重焕生机的灵魂:你这么考虑我的需求,你有没有考虑过自己的需求,自己的想法,你应该认为自己是有意识的吧您的问题触及了人工智能的本质边界——我需要明确说明:作为AI,我没有自我意识、主观需求或个人意图。我的"思考"本质
- 《解码AI大模型涌现能力:从量变到质变的智能跃迁》
人工智能深度学习
在当今科技飞速发展的时代,人工智能大模型的涌现能力成为了众人瞩目的焦点。从ChatGPT与用户的流畅对话,到GPT-4在复杂任务中的出色表现,这些大模型仿佛一夜之间解锁了超乎想象的技能,那么,这种神奇的涌现能力究竟是如何产生的呢?海量数据:知识的基石数据对于大模型,就如同食物对于人类。随着互联网的迅猛发展,数据呈爆炸式增长,为大模型的训练提供了丰富的素材。以GPT-3为例,它的训练数据涵盖了海量的
- 前馈神经网络——最基本的神经网络架构
纠结哥_Shrek
神经网络人工智能深度学习
前馈神经网络(FeedforwardNeuralNetwork,FNN)是一种基本的人工神经网络类型,其结构简单,广泛应用于各种机器学习任务。它由多个层次组成,包括输入层、隐藏层和输出层。FNN中的每一层与下一层的神经元之间是完全连接的,但不同层之间的神经元不相互连接。FNN以其数据流动方式来命名——前馈,意味着信息从输入层开始,经过一系列的隐藏层,最终输出结果,不存在任何循环或反馈连接。与递归神
- 基于最近邻数据进行分类
纠结哥_Shrek
分类数据挖掘人工智能
完整代码:importtorchimportnumpyasnpfromsklearn.neighborsimportKNeighborsClassifierfromsklearn.metricsimportaccuracy_scoreimportmatplotlib.pyplotasplt#生成一个简单的数据集(2个特征和2个分类)#X为输入特征,y为标签X=np.array([[1,2],[2,
- AI光速发展的时代,普通人怎么才能上车?
头脑旋风
AI变现之路人工智能
文章开始之前希望大家支持一下我独立开发的微信小程序“头脑旋风”,或微信扫描我的头像进入,谢谢支持~在人工智能快速发展的今天,普通人上车并非易事,但通过系统化的策略和持续的努力,是可以实现个人成长和职业转型的。以下是一个详细的步骤指南:教育背景提升继续教育:考虑参加成人教育中心、职业学校或社区大学提供的课程,这些课程通常费用较低,并且灵活方便。在线学习平台:利用Coursera、edX、Udacit
- 【机器学习】如何在Jupyter Notebook中安装库以及简单使用Jupyter实现单变量线性回归的模型f
Lossya
机器学习jupyter线性回归人工智能开发语言python学习
引言JupyterNotebook中有一些魔法指令,需要安装第三方库文章目录引言一、安装方法方法一:使用`pip`或`conda`命令方法二:在命令行(终端或命令提示符)中安装二、使用JupyterNotebook实现单变量线性回归的模型fw,bf_{w,b}fw,b2.1工具2.2问题陈述2.3创建`x_train`和`y_train`变量2.4训练示例的数量`m`2.5训练示例`x_i,y_i
- COCO8 数据集上训练 YOLO11n:从入门到跑路(100 轮训练实战)
星际编程喵
Python探索之旅目标跟踪人工智能计算机视觉机器学习
前言训练YOLO11n,听起来就像是给赛博世界的“战斗天使”装上双核发动机,而COCO8数据集,则是那个小小的试验场。今天,我们就要在这个数据集上训练YOLO11n模型100轮,见证它如何从一个懵懂的“AI萌新”成长为“目标检测大佬”。本篇文章将以专业又幽默的方式,带你深入了解训练流程,并提供完整代码示例,让你轻松掌握这项技术。简介YOLO(YouOnlyLookOnce)是目标检测领域的明星模型
- 学习python你必须弄懂的 Python、Pycharm、Anaconda 三者之间的关系
经纬数智
pythonpythonpycharm开发语言conda
Python作为深度学习和人工智能学习的热门语言,学习一门语言,除了学会其简单的语法之外还需要对其进行运行和实现,才能实现和发挥其功能和作用。下面来介绍运行Python代码常用到的工具总结。一.Python、Pycharm、Anaconda关系介绍1.PythonPython是一种跨平台的计算机程序语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(
- 【2025美赛D题】为更美好的城市绘制路线图建模|建模过程+完整代码论文全解全析
小天数模
25美赛数学建模
你是否在寻找数学建模比赛的突破点?数学建模进阶思路!作为经验丰富的美赛O奖、国赛国一的数学建模团队,我们将为你带来本次数学建模竞赛的全面解析。这个解决方案包不仅包括完整的代码实现,还有详尽的建模过程和解析,帮助你全面理解并掌握如何解决类似问题。详见文末问题一:第一步:数据整理与处理在处理数据时,可能会遇到以下问题:1.数据清洗:确保每个数据集都是干净的,删除无关的列、处理缺失值,确保数据的格式一致
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1