单片机直驱两相四线步进电机研究

【本文发布于https://blog.csdn.net/Stack_/article/details/132236329,未经允许不得转载,转载须注明出处】


双极性步进电机(两相四线步进电机),原理的东西就先不讲太多了,还没搞清楚,边查资料边写代码来理解吧。

此电路使用4片CMS6324去驱动2个H桥,每片CMS6324驱动的桥的同一侧,其自带硬件死区,所以不需要考虑死区插入的问题。如果不是这样的电路,则需要注意上下桥臂同时导通短路的问题。


一、电机基本原理图 内部简化图


单片机直驱两相四线步进电机研究_第1张图片

四拍,每个脉冲转 1.8°


单片机直驱两相四线步进电机研究_第2张图片

八拍,每个脉冲转 0.9°


二、简单的驱动代码


#define MOTOR_A_P_PORT          PORT1   //P15 A+
#define MOTOR_A_P_PIN           PIN5
    
#define MOTOR_A_N_PORT          PORT1   //P14 A-
#define MOTOR_A_N_PIN           PIN4

#define MOTOR_B_P_PORT          PORT1   //P13 B+
#define MOTOR_B_P_PIN           PIN3

#define MOTOR_B_N_PORT          PORT1   //P12 B-
#define MOTOR_B_N_PIN           PIN2


#define MOTOR_A_P__SET()        PORT_SetBit(MOTOR_A_P_PORT, MOTOR_A_P_PIN)
#define MOTOR_A_P__RESET()      PORT_ClrBit(MOTOR_A_P_PORT, MOTOR_A_P_PIN)

#define MOTOR_A_N__SET()        PORT_SetBit(MOTOR_A_N_PORT, MOTOR_A_N_PIN)
#define MOTOR_A_N__RESET()      PORT_ClrBit(MOTOR_A_N_PORT, MOTOR_A_N_PIN)

#define MOTOR_B_P__SET()        PORT_SetBit(MOTOR_B_P_PORT, MOTOR_B_P_PIN)
#define MOTOR_B_P__RESET()      PORT_ClrBit(MOTOR_B_P_PORT, MOTOR_B_P_PIN)

#define MOTOR_B_N__SET()        PORT_SetBit(MOTOR_B_N_PORT, MOTOR_B_N_PIN)
#define MOTOR_B_N__RESET()      PORT_ClrBit(MOTOR_B_N_PORT, MOTOR_B_N_PIN)



    
    PORT_Init(MOTOR_A_P_PORT, MOTOR_A_P_PIN, OUTPUT); //P15 A+
    PORT_Init(MOTOR_A_N_PORT, MOTOR_A_N_PIN, OUTPUT); //P14 A-
    PORT_Init(MOTOR_B_P_PORT, MOTOR_B_P_PIN, OUTPUT); //P13 B+
    PORT_Init(MOTOR_B_N_PORT, MOTOR_B_N_PIN, OUTPUT); //P12 B-
    
    PORT_Init(PORT3, PIN0, OUTPUT); //P30 CMS6021 POWER_EN, 使能CMS6324供电
    PORT_SetBit(PORT3, PIN0);
    
	while(1)
	{
        #if (0) 													//四拍
            #if (0) 													//四拍正转
            //A+
            MOTOR_A_P__SET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //B+
            MOTOR_A_P__RESET();
            MOTOR_B_P__SET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //A-
            MOTOR_A_P__RESET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__SET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //B-
            MOTOR_A_P__RESET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__SET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            #else   													//四拍反转
            //A+
            MOTOR_A_P__SET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //B-
            MOTOR_A_P__RESET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__SET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //A-
            MOTOR_A_P__RESET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__SET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //B+
            MOTOR_A_P__RESET();
            MOTOR_B_P__SET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            #endif
        #else   													//八拍
            #if (0) 													//八拍正向
            //A+
            MOTOR_A_P__SET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //A+ B+
            MOTOR_A_P__SET();
            MOTOR_B_P__SET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //B+
            MOTOR_A_P__RESET();
            MOTOR_B_P__SET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //B+ A-
            MOTOR_A_P__RESET();
            MOTOR_B_P__SET();
            MOTOR_A_N__SET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //A-
            MOTOR_A_P__RESET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__SET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //A- B-
            MOTOR_A_P__RESET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__SET();
            MOTOR_B_N__SET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //B-
            MOTOR_A_P__RESET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__SET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //B- A+
            MOTOR_A_P__SET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__SET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            #else 														//八拍反向
            //A+
            MOTOR_A_P__SET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //B- A+
            MOTOR_A_P__SET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__SET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //B-
            MOTOR_A_P__RESET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__SET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //A- B-
            MOTOR_A_P__RESET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__SET();
            MOTOR_B_N__SET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //A-
            MOTOR_A_P__RESET();
            MOTOR_B_P__RESET();
            MOTOR_A_N__SET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //B+ A-
            MOTOR_A_P__RESET();
            MOTOR_B_P__SET();
            MOTOR_A_N__SET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //B+
            MOTOR_A_P__RESET();
            MOTOR_B_P__SET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            //A+ B+
            MOTOR_A_P__SET();
            MOTOR_B_P__SET();
            MOTOR_A_N__RESET();
            MOTOR_B_N__RESET();
            UserTimer_Reset(&timer_delay);
            while(UserTimer_Read(&timer_delay) < TIMEOUT_1MS);
            #endif
        #endif
	}

黄波形为 A+
蓝波形为 B+
紫波形为 A-
绿波形为 B-

单片机直驱两相四线步进电机研究_第3张图片

四拍正转,每个正脉冲转1.8°,360°/1.8°=200个脉冲转一圈。一次循环A+ B+ A- B-四个脉冲,循环50次即转一圈。


单片机直驱两相四线步进电机研究_第4张图片

四拍反转。四拍时,1ms切换太快了,会严重丢步,转动非常卡顿,将延时即切换时间适当拉长可获得较为平顺的效果。但导通时间过长会导致总电流很大。


单片机直驱两相四线步进电机研究_第5张图片

八拍正转。拍数增加,转动相较于4拍平顺了不少


单片机直驱两相四线步进电机研究_第6张图片

八拍反转



三、抓取步进电机驱动芯片/驱动器的四线波形进行对比


单片机直驱两相四线步进电机研究_第7张图片

正转。可见,大体思路和上面的是一致的,只不过为了驱动更平顺以及功耗的考虑,各线通电时不是恒导通的,而是以PWM的方式进行输出


单片机直驱两相四线步进电机研究_第8张图片

反转


单片机直驱两相四线步进电机研究_第9张图片

每一相通电时,其正占空比都是先增后减,即电流先增后减


单片机直驱两相四线步进电机研究_第10张图片

当速度提高,换相频率变高。一般地,功率也需要提高,速度不变负载增加,功率也需提高(需要接编码器),所以正占空比(平均)也变大了,电流变大


以上为波形研究,待续

你可能感兴趣的:(MCU,笔记,单片机)