实验:esp8266 连接阿里云。
准备工作:
某宝随便买个,多的是:
usb连接到电脑上之后,可以识别到串口,说明有固件。
由于新买的模组,芯片内的固件可能并不是我们想要的,此时可自行官网下载固件及烧录。
固件地址:https://docs.ai-thinker.com/%E5%9B%BA%E4%BB%B6%E6%B1%87%E6%80%BB
本人使用的固件:
固件下载之后,需使用官方提供的烧录工具,地址:https://docs.ai-thinker.com/%E5%BC%80%E5%8F%91%E5%B7%A5%E5%85%B72
选择这个下载,具体使用方式网上很多。
上述两个即可烧录我们准备使用的固件。
主要是物联网产品与设备的申请,具体详细步骤网上很多,不再啰嗦,看下图
本人使用设备中的物模型,Topic使用物模型自带的:
基本要使用的指令:
指令 | 含义 |
---|---|
AT\r\n | 测试 |
AT+RST\r\n | 复位 |
AT+GMR\r\n | 查询当前使用版本 |
AT+CWMODE=1\r\n | 设置station模式,可以连接热点 |
AT+CWJAP=“wifi”,“passwd”\r\n | 连接热点 |
AT+MQTTUSERCFG=0,1,“clientId”,“username”,“password”,0,0,“”\r\n | 设置MQTT连接参数 |
AT+MQTTSUB=0,“topic”,0\r\n | 订阅主题 |
AT+MQTTPUB=0,“topic”,“msg”,0,0\r\n | 发布主题 |
AT+MQTTCLEAN=0\r\n | 断开连接 |
AT+MQTTCONN?\r\n | 查询连接 |
AT+MQTTSUB?\r\n | 查询订阅的主题 |
包括:clientId、username、passwd、mqttHostUrl、port
获取方式:
点击查看,则你所需要的都在里面:
好了,开始连接,使用上面的命令一一对号即可:
命令1:测试
命令2:复位
命令3:查询当前版本
命令4:设置wifi工作模式为station
命令5:查询是否连接wifi,没有的话,要连接,使用上述命令,本人已连接
命令6:查询MQTT是否连接
命令7:配置MQTT连接参数,使用上面获取到的clienId,username,passwd
命令8:连接MQTT,使用上面获取到的mqttHostUrl,port
命令9:向云端发布主题
云端是否收到主题消息?查看下图:
在未获取到主题之前,物模型中的温度是245
在主题发布之后(发布的主题中的温度是76),物模型中的温度变成了76,说明主题接收正常
设备端订阅主题,可自行测试,留下截图:
订阅
云端发布主题消息:
hello, I just test yixia.
to esp8266 wifi module.
计算方式很多,本人介绍其中一种通过c程序计算得到的参数。
三元组,即:
在添加阿里云设备之后,这三个参数即可生成。
计算
aiot_mqtt_sign.c
/*
* Copyright (C) 2015-2019 Alibaba Group Holding Limited
*/
#include
#include
#include
#include
#define PRODUCTKEY_MAXLEN (20)
#define DEVICENAME_MAXLEN (32)
#define DEVICESECRET_MAXLEN (64)
#define SIGN_SOURCE_MAXLEN (200)
#define CLIENTID_MAXLEN (150)
#define USERNAME_MAXLEN (64)
#define PASSWORD_MAXLEN (65)
#define TIMESTAMP_VALUE "2524608000000"
#define MQTT_CLINETID_KV "|timestamp=2524608000000,_v=paho-c-1.0.0,securemode=3,signmethod=hmacsha256,lan=C|"
static void utils_hmac_sha256(const uint8_t *msg, uint32_t msg_len, const uint8_t *key, uint32_t key_len, uint8_t output[32]);
static void _hex2str(uint8_t *input, uint16_t input_len, char *output)
{
char *zEncode = "0123456789ABCDEF";
int i = 0, j = 0;
for (i = 0; i < input_len; i++) {
output[j++] = zEncode[(input[i] >> 4) & 0xf];
output[j++] = zEncode[(input[i]) & 0xf];
}
}
int aiotMqttSign(const char *productKey, const char *deviceName, const char *deviceSecret,
char clientId[150], char username[64], char password[65])
{
char deviceId[PRODUCTKEY_MAXLEN + DEVICENAME_MAXLEN + 2] = {0};
char macSrc[SIGN_SOURCE_MAXLEN] = {0};
uint8_t macRes[32] = {0};
int res;
/* check parameters */
if (productKey == NULL || deviceName == NULL || deviceSecret == NULL ||
clientId == NULL || username == NULL || password == NULL) {
return -1;
}
if ((strlen(productKey) > PRODUCTKEY_MAXLEN) || (strlen(deviceName) > DEVICENAME_MAXLEN) ||
(strlen(deviceSecret) > DEVICESECRET_MAXLEN)) {
return -1;
}
/* setup deviceId */
memcpy(deviceId, deviceName, strlen(deviceName));
memcpy(deviceId + strlen(deviceId), "&", strlen("&"));
memcpy(deviceId + strlen(deviceId), productKey, strlen(productKey));
/* setup clientid */
memcpy(clientId, deviceId, strlen(deviceId));
memcpy(clientId + strlen(deviceId), MQTT_CLINETID_KV, strlen(MQTT_CLINETID_KV));
memset(clientId + strlen(deviceId) + strlen(MQTT_CLINETID_KV), 0, 1);
/* setup username */
memcpy(username, deviceId, strlen(deviceId));
memset(username + strlen(deviceId), 0, 1);
/* setup password */
memcpy(macSrc, "clientId", strlen("clientId"));
memcpy(macSrc + strlen(macSrc), deviceId, strlen(deviceId));
memcpy(macSrc + strlen(macSrc), "deviceName", strlen("deviceName"));
memcpy(macSrc + strlen(macSrc), deviceName, strlen(deviceName));
memcpy(macSrc + strlen(macSrc), "productKey", strlen("productKey"));
memcpy(macSrc + strlen(macSrc), productKey, strlen(productKey));
memcpy(macSrc + strlen(macSrc), "timestamp", strlen("timestamp"));
memcpy(macSrc + strlen(macSrc), TIMESTAMP_VALUE, strlen(TIMESTAMP_VALUE));
utils_hmac_sha256((uint8_t *)macSrc, strlen(macSrc), (uint8_t *)deviceSecret,
strlen(deviceSecret), macRes);
memset(password, 0, PASSWORD_MAXLEN);
_hex2str(macRes, sizeof(macRes), password);
return 0;
}
/******************************
* hmac-sha256 implement below
******************************/
#define SHA256_KEY_IOPAD_SIZE (64)
#define SHA256_DIGEST_SIZE (32)
/**
* \brief SHA-256 context structure
*/
typedef struct {
uint32_t total[2]; /*!< number of bytes processed */
uint32_t state[8]; /*!< intermediate digest state */
unsigned char buffer[64]; /*!< data block being processed */
int is224; /*!< 0 => SHA-256, else SHA-224 */
} iot_sha256_context;
typedef union {
char sptr[8];
uint64_t lint;
} u_retLen;
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i) \
do { \
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
| ( (uint32_t) (b)[(i) + 3] ); \
} while( 0 )
#endif
#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i) \
do { \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
} while( 0 )
#endif
static void utils_sha256_zeroize(void *v, uint32_t n)
{
volatile unsigned char *p = v;
while (n--) {
*p++ = 0;
}
}
void utils_sha256_init(iot_sha256_context *ctx)
{
memset(ctx, 0, sizeof(iot_sha256_context));
}
void utils_sha256_free(iot_sha256_context *ctx)
{
if (NULL == ctx) {
return;
}
utils_sha256_zeroize(ctx, sizeof(iot_sha256_context));
}
void utils_sha256_starts(iot_sha256_context *ctx)
{
int is224 = 0;
ctx->total[0] = 0;
ctx->total[1] = 0;
if (is224 == 0) {
/* SHA-256 */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
ctx->is224 = is224;
}
static const uint32_t K[] = {
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};
#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
#define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
#define F0(x,y,z) ((x & y) | (z & (x | y)))
#define F1(x,y,z) (z ^ (x & (y ^ z)))
#define R(t) \
( \
W[t] = S1(W[t - 2]) + W[t - 7] + \
S0(W[t - 15]) + W[t - 16] \
)
#define P(a,b,c,d,e,f,g,h,x,K) \
{ \
temp1 = h + S3(e) + F1(e,f,g) + K + x; \
temp2 = S2(a) + F0(a,b,c); \
d += temp1; h = temp1 + temp2; \
}
void utils_sha256_process(iot_sha256_context *ctx, const unsigned char data[64])
{
uint32_t temp1, temp2, W[64];
uint32_t A[8];
unsigned int i;
for (i = 0; i < 8; i++) {
A[i] = ctx->state[i];
}
for (i = 0; i < 64; i++) {
if (i < 16) {
GET_UINT32_BE(W[i], data, 4 * i);
} else {
R(i);
}
P(A[0], A[1], A[2], A[3], A[4], A[5], A[6], A[7], W[i], K[i]);
temp1 = A[7];
A[7] = A[6];
A[6] = A[5];
A[5] = A[4];
A[4] = A[3];
A[3] = A[2];
A[2] = A[1];
A[1] = A[0];
A[0] = temp1;
}
for (i = 0; i < 8; i++) {
ctx->state[i] += A[i];
}
}
void utils_sha256_update(iot_sha256_context *ctx, const unsigned char *input, uint32_t ilen)
{
size_t fill;
uint32_t left;
if (ilen == 0) {
return;
}
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += (uint32_t) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if (ctx->total[0] < (uint32_t) ilen) {
ctx->total[1]++;
}
if (left && ilen >= fill) {
memcpy((void *)(ctx->buffer + left), input, fill);
utils_sha256_process(ctx, ctx->buffer);
input += fill;
ilen -= fill;
left = 0;
}
while (ilen >= 64) {
utils_sha256_process(ctx, input);
input += 64;
ilen -= 64;
}
if (ilen > 0) {
memcpy((void *)(ctx->buffer + left), input, ilen);
}
}
static const unsigned char sha256_padding[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
void utils_sha256_finish(iot_sha256_context *ctx, uint8_t output[32])
{
uint32_t last, padn;
uint32_t high, low;
unsigned char msglen[8];
high = (ctx->total[0] >> 29)
| (ctx->total[1] << 3);
low = (ctx->total[0] << 3);
PUT_UINT32_BE(high, msglen, 0);
PUT_UINT32_BE(low, msglen, 4);
last = ctx->total[0] & 0x3F;
padn = (last < 56) ? (56 - last) : (120 - last);
utils_sha256_update(ctx, sha256_padding, padn);
utils_sha256_update(ctx, msglen, 8);
PUT_UINT32_BE(ctx->state[0], output, 0);
PUT_UINT32_BE(ctx->state[1], output, 4);
PUT_UINT32_BE(ctx->state[2], output, 8);
PUT_UINT32_BE(ctx->state[3], output, 12);
PUT_UINT32_BE(ctx->state[4], output, 16);
PUT_UINT32_BE(ctx->state[5], output, 20);
PUT_UINT32_BE(ctx->state[6], output, 24);
if (ctx->is224 == 0) {
PUT_UINT32_BE(ctx->state[7], output, 28);
}
}
void utils_sha256(const uint8_t *input, uint32_t ilen, uint8_t output[32])
{
iot_sha256_context ctx;
utils_sha256_init(&ctx);
utils_sha256_starts(&ctx);
utils_sha256_update(&ctx, input, ilen);
utils_sha256_finish(&ctx, output);
utils_sha256_free(&ctx);
}
static void utils_hmac_sha256(const uint8_t *msg, uint32_t msg_len, const uint8_t *key, uint32_t key_len, uint8_t output[32])
{
iot_sha256_context context;
uint8_t k_ipad[SHA256_KEY_IOPAD_SIZE]; /* inner padding - key XORd with ipad */
uint8_t k_opad[SHA256_KEY_IOPAD_SIZE]; /* outer padding - key XORd with opad */
int32_t i;
if ((NULL == msg) || (NULL == key) || (NULL == output)) {
return;
}
if (key_len > SHA256_KEY_IOPAD_SIZE) {
return;
}
/* start out by storing key in pads */
memset(k_ipad, 0, sizeof(k_ipad));
memset(k_opad, 0, sizeof(k_opad));
memcpy(k_ipad, key, key_len);
memcpy(k_opad, key, key_len);
/* XOR key with ipad and opad values */
for (i = 0; i < SHA256_KEY_IOPAD_SIZE; i++) {
k_ipad[i] ^= 0x36;
k_opad[i] ^= 0x5c;
}
/* perform inner SHA */
utils_sha256_init(&context); /* init context for 1st pass */
utils_sha256_starts(&context); /* setup context for 1st pass */
utils_sha256_update(&context, k_ipad, SHA256_KEY_IOPAD_SIZE); /* start with inner pad */
utils_sha256_update(&context, msg, msg_len); /* then text of datagram */
utils_sha256_finish(&context, output); /* finish up 1st pass */
/* perform outer SHA */
utils_sha256_init(&context); /* init context for 2nd pass */
utils_sha256_starts(&context); /* setup context for 2nd pass */
utils_sha256_update(&context, k_opad, SHA256_KEY_IOPAD_SIZE); /* start with outer pad */
utils_sha256_update(&context, output, SHA256_DIGEST_SIZE); /* then results of 1st hash */
utils_sha256_finish(&context, output); /* finish up 2nd pass */
}
aiot_mqtt_sign.h
#ifndef __AIOT_MQTT_SIGN_H
#define __AIOT_MQTT_SIGN_H
int aiotMqttSign(const char *productKey, const char *deviceName, const char *deviceSecret,
char clientId[150], char username[64], char password[65]);
#endif
main.c
#include "aiot_mqtt_sign.h"
#include
#define EXAMPLE_PRODUCT_KEY "xxx"
#define EXAMPLE_DEVICE_NAME "xxx"
#define EXAMPLE_DEVICE_SECRET "xxx"
int main()
{
int rc = 0;
/* invoke aiotMqttSign to generate mqtt connect parameters */
char clientId[150] = {0};
char username[65] = {0};
char password[65] = {0};
if ((rc = aiotMqttSign(EXAMPLE_PRODUCT_KEY, EXAMPLE_DEVICE_NAME, EXAMPLE_DEVICE_SECRET, clientId, username, password) < 0)) {
printf("aiotMqttSign -%0x4x\n", -rc);
return -1;
}
printf("clientid: %s\n", clientId);
printf("username: %s\n", username);
printf("password: %s\n", password);
printf("dcdscds\r\n");
return 1;
}
填入三元组,即可编译生成所需要的clientId,username,passwd
后面的步骤参数上面。
有一个需要特别注意的点,就是at指令包含的字符串中的逗号(,)需要转义字符转换,不能直接使用,如:
"sfefr,rgtgt" //此处直接使用会有问题
'sfefr\,rgtgt' //此处使用正确