hzw2020-12-06

光片显微镜与传统显微镜的不同在于激发光的照明方式。它的照明光是一张与成像面平行的薄薄的“光片”(图3),只有焦平面的样品被照亮,而其上下的样品不受影响。
和传统荧光照明方式相比,光片照明有如下优点:

提高了图像和背景的反差(Signal-to-Background Ratio) 和轴向分辨率:光片照明技术保证了焦平面上下的样品不会被激发,具备和共聚焦显微镜类似的光学切片功能;
减少了光漂白和光毒性:与传统的荧光照明技术相比,光毒性可以被降低20-100倍,这样,我们就能在更接近生理状态的条件下,对活体生物样品进行长时间的三维成像;
与激光共聚焦和双光子显微镜使用低QE的PMT的点扫描成像相比,光片显微镜使用高QE的CCD或sCMOS相机进行面成像,大大提高了成像速度和图像的信噪比。共聚焦需要几分钟甚至几小时才能拍完的样品,用光片显微镜只需要几秒到几分钟。因此,光片显微镜也特别适合用于大样品成像。
在多数光片系统中,光学元件是固定的,需要移动样品 (或使光片从xyz方向扫过样品) 来获得完整的3D图像。通过移动或旋转样品,可以对大样品进行成像,并从多个角度拍摄,将这些多视角图像通过特别算法融合在一起后,能够进一步提高图像分辨率,并修正一些光片技术特有的缺陷。

总之,光片荧光显微镜从设计原理上,大大降低了激发光对活体样品的光毒性和光漂白,天生具有光学切片能力,使用高量子效率的CCD或sCMOS探测器,是大视野,高速,高分辨率三维活体显微成像的理想工具
产生光片最简单的方法是在光路中引入一个圆柱形透镜。通过该透镜的光,宽度维持不变,但在高度上被压缩成平面 (图4),然后通过照明物镜,在焦面上形成“光片”。成像物镜垂直于照明物镜放置,并聚焦在光片上获取荧光信号。


圆柱形透镜

使用NA较小的照明物镜,能够实现较宽范围的均匀照明,即视野更大;但是相应的,光片的厚度也越大,导致轴向分辨率降低。而高NA物镜产生的光片视野会比较小,但轴向分辨率较好。

你可能感兴趣的:(hzw2020-12-06)