给定一个长度为 N N N 的数列 A A A,以及 M M M 条指令,每条指令可能是以下两种之一:
C l r d
,表示把 A [ l ] , A [ l + 1 ] , … , A [ r ] A[l],A[l+1],…,A[r] A[l],A[l+1],…,A[r] 都加上 d d d。Q l r
,表示询问数列中第 l ∼ r l \sim r l∼r 个数的和。对于每个询问,输出一个整数表示答案。
第一行两个整数 N , M N,M N,M。
第二行 N N N 个整数 A [ i ] A[i] A[i]。
接下来 M M M 行表示 M M M 条指令,每条指令的格式如题目描述所示。
对于每个询问,输出一个整数表示答案。
每个答案占一行。
1 ≤ N , M ≤ 1 0 5 1 \le N,M \le 10^5 1≤N,M≤105,
∣ d ∣ ≤ 10000 |d| \le 10000 ∣d∣≤10000,
∣ A [ i ] ∣ ≤ 1 0 9 |A[i]| \le 10^9 ∣A[i]∣≤109
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
4
55
9
15
考虑用树状数组 tr[]
维护差分数组
则求原数组的前缀和
{ a 1 = d 1 a 2 = d 1 + d 2 a 3 = d 1 + d 2 + d 3 . . . . . . a n = d 1 + d 2 + . . . + d n \left\{\begin{matrix} a_1& =& d_1& & & & & & & \\ a_2& =& d_1& +& d_2& & & & & \\ a_3& =& d_1& +& d_2& +& d_3& & & \\ .& .& .& .& .& .& & & & \\ a_n& =& d_1& +& d_2& +& ...& +& d_n& \\ \end{matrix}\right. ⎩ ⎨ ⎧a1a2a3.an===.=d1d1d1.d1++.+d2d2.d2+.+d3...+dn
s i = ∑ i = 1 n a i = { d 1 d 1 + d 2 d 1 + d 2 + d 3 . . . . . . d 1 + d 2 + . . . + d n s_i=\sum_{i=1}^{n}a_i=\left\{\begin{matrix} d_1& & & & & & & \\ d_1& +& d_2& & & & & \\ d_1& +& d_2& +& d_3& & & \\ .& .& .& .& .& .& & & & \\ d_1& +& d_2& +& ...& +& d_n& \\ \end{matrix}\right. si=i=1∑nai=⎩ ⎨ ⎧d1d1d1.d1++.+d2d2.d2+.+d3.....+dn
我们考虑把后面的矩阵补全:
则
s i = ( n + 1 ) × ∑ i = 1 n d i − ∑ i = 1 n ( i × d i ) s_i=(n+1) \times \sum_{i=1}^{n}d_i-\sum_{i=1}^{n}(i \times d_i) si=(n+1)×i=1∑ndi−i=1∑n(i×di)
所以我们需要两个树状数组,tr1[]
维护差分数组,tr2[]
维护 i × d i i \times d_i i×di
代码:
#include
using namespace std;
typedef long long LL;
const LL N = 1000010;
LL n, m;
LL a[N];
LL t1[N], t2[N];
inline LL lowbit(LL x)
{
return x & -x;
}
inline void add(LL t[], LL x, LL c)
{
for (LL i = x; i <= n; i += lowbit(i))
t[i] += c;
}
inline LL sum(LL t[], LL x)
{
LL res = 0;
for (LL i = x; i; i -= lowbit(i))
res += t[i];
return res;
}
inline LL psum(LL x)
{
return sum(t1, x) * (x + 1) - sum(t2, x);
}
int main()
{
scanf("%lld%lld", &n, &m);
for (LL i = 1; i <= n; i ++ ) scanf("%lld", &a[i]);
for (LL i = 1; i <= n; i ++ )
{
LL b = a[i] - a[i - 1];
add(t1, i, b);
add(t2, i, b * i);
}
while (m -- )
{
char op[2];
LL l, r, d;
scanf("%s%lld%lld", op, &l, &r);
if (op[0] == '2')
{
printf("%lld\n", psum(r) - psum(l - 1));
}
else
{
scanf("%lld", &d);
add(t1, l, d), add(t2, l, l * d);
add(t1, r + 1, -d), add(t2, r + 1, -d * (r + 1));
}
}
return 0;
}
#define qwq optimize
#pragma GCC qwq(1)
#pragma GCC qwq(2)
#pragma GCC qwq(3)
#pragma GCC qwq("Ofast")
#pragma GCC qwq("inline")
#pragma GCC qwq("-fgcse")
#pragma GCC qwq("-fgcse-lm")
#pragma GCC qwq("-fipa-sra")
#pragma GCC qwq("-ftree-pre")
#pragma GCC qwq("-ftree-vrp")
#pragma GCC qwq("-fpeephole2")
#pragma GCC qwq("-ffast-math")
#pragma GCC qwq("-fsched-spec")
#pragma GCC qwq("unroll-loops")
#pragma GCC qwq("-falign-jumps")
#pragma GCC qwq("-falign-loops")
#pragma GCC qwq("-falign-labels")
#pragma GCC qwq("-fdevirtualize")
#pragma GCC qwq("-fcaller-saves")
#pragma GCC qwq("-fcrossjumping")
#pragma GCC qwq("-fthread-jumps")
#pragma GCC qwq("-funroll-loops")
#pragma GCC qwq("-fwhole-program")
#pragma GCC qwq("-freorder-blocks")
#pragma GCC qwq("-fschedule-insns")
#pragma GCC qwq("inline-functions")
#pragma GCC qwq("-ftree-tail-merge")
#pragma GCC qwq("-fschedule-insns2")
#pragma GCC qwq("-fstrict-aliasing")
#pragma GCC qwq("-fstrict-overflow")
#pragma GCC qwq("-falign-functions")
#pragma GCC qwq("-fcse-skip-blocks")
#pragma GCC qwq("-fcse-follow-jumps")
#pragma GCC qwq("-fsched-interblock")
#pragma GCC qwq("-fpartial-inlining")
#pragma GCC qwq("no-stack-protector")
#pragma GCC qwq("-freorder-functions")
#pragma GCC qwq("-findirect-inlining")
#pragma GCC qwq("-fhoist-adjacent-loads")
#pragma GCC qwq("-frerun-cse-after-loop")
#pragma GCC qwq("inline-small-functions")
#pragma GCC qwq("-finline-small-functions")
#pragma GCC qwq("-ftree-switch-conversion")
#pragma GCC qwq("-fqwq-sibling-calls")
#pragma GCC qwq("-fexpensive-optimizations")
#pragma GCC qwq("-funsafe-loop-optimizations")
#pragma GCC qwq("inline-functions-called-once")
#pragma GCC qwq("-fdelete-null-pointer-checks")
#include
#include
#define lb(x) (x & (-x))
using namespace std;
typedef long long LL;
const LL N = 100010;
LL n, m;
LL a[N];
LL t1[N], t2[N];
char *p1, *p2, buf[N];
#define nc() (p1 == p2 && (p2 = (p1 = buf) +\
fread(buf, 1, N, stdin), p1 == p2) ? EOF : *p1 ++ )
LL read()
{
LL x = 0, f = 1;
char ch = nc();
while (ch < 48 || ch > 57)
{
if (ch == '-') f = -1;
ch = nc();
}
while (ch >= 48 && ch <= 57)
x = (x << 3) + (x << 1) + (ch ^ 48), ch = nc();
return x * f;
}
char obuf[N], *p3 = obuf;
#define putchar(x) (p3 - obuf < N) ? (*p3 ++ = x) :\
(fwrite(obuf, p3 - obuf, 1, stdout), p3 = obuf, *p3 ++ = x)
inline void write(LL x)
{
if (!x)
{
putchar('0');
return;
}
LL len = 0, k1 = x, c[40];
if (k1 < 0) k1 = -k1, putchar('-');
while (k1) c[len ++ ] = k1 % 10 ^ 48, k1 /= 10;
while (len -- ) putchar(c[len]);
}
inline void add(LL t[], LL x, LL c)
{
for (LL i = x; i <= n; i += lb(i))
t[i] += c;
}
inline LL sum(LL t[], LL x)
{
LL res = 0;
for (LL i = x; i; i -= lb(i))
res += t[i];
return res;
}
inline LL psum(LL x)
{
return sum(t1, x) * (x + 1) - sum(t2, x);
}
int main()
{
n = read(), m = read();
for (LL i = 1; i <= n; i ++ ) a[i] = read();
for (LL i = 1; i <= n; i ++ )
{
LL b = a[i] - a[i - 1];
add(t1, i, b);
add(t2, i, b * i);
}
LL op, l, r, d;
while (m -- )
{
op = read(), l = read(), r = read();
if (op == 2) write(psum(r) - psum(l - 1)), putchar(10);
else
{
d = read();
add(t1, l, d), add(t2, l, l * d);
add(t1, r + 1, -d), add(t2, r + 1, -d * (r + 1));
}
}
fwrite(obuf, p3 - obuf, 1, stdout);
return 0;
}
最后,如果觉得对您有帮助的话,点个赞再走吧!