numpy.interp(x, xp, fp, left=None, right=None, period=None)
单调增加样本点的一维线性插值。
将一维分段线性插值返回给具有给定离散数据点的函数 (经验,fp),评估为x.
x: array_like
计算插值的 x 坐标。
xp: 一维浮点序列
数据点的 x 坐标,如果参数必须增加时期未指定。否则,经验在用标准化周期性边界后进行内部排序xp = xp % period
.
fp: 浮点数或复数的一维序列
数据点的 y 坐标,长度与 xp 相同。
left: 对应于 fp 的可选浮点数或复数
x < xp[0] 的返回值,默认为 fp[0]。
right: 对应于 fp 的可选浮点数或复数
x > xp[-1] 的返回值,默认为 fp[-1]。
period: 无或浮点数,可选
x 坐标的句点。此参数允许正确插值角度 x 坐标。如果指定了 period,则忽略参数 left 和 right。
y: float 或 complex(对应于 fp)或 ndarray
插值,与 x 的形状相同。
ValueError
如果 xp 和 fp 的长度不同 如果 xp 或 fp 不是一维序列 如果 period == 0
警告
x 坐标序列预计会增加,但这没有明确强制执行。但是,如果序列 xp 不增加,则插值结果是没有意义的。
请注意,由于 NaN 是不可排序的,经验也不能包含 NaN。
xp 严格增加的简单检查是:
np.all(np.diff(xp) > 0)
>>> xp = [1, 2, 3]
>>> fp = [3, 2, 0]
>>> np.interp(2.5, xp, fp)
1.0
>>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
array([3. , 3. , 2.5 , 0.56, 0. ])
>>> UNDEF = -99.0
>>> np.interp(3.14, xp, fp, right=UNDEF)
-99.0
绘制正弦函数的插值:
import numpy as np
x = np.linspace(0, 2*np.pi, 10)
y = np.sin(x)
xvals = np.linspace(0, 2*np.pi, 50)
# 增加 范围外的x 值
xvals=np.append(xvals,(6.5,8.0))
yinterp = np.interp(xvals, x, y) #xvals代表要生成点的横坐标,x代表原来区间的横坐标,y代表原来区间值得纵坐标。
import matplotlib.pyplot as plt
plt.plot(x, y, 'o') #蓝色的点
plt.plot(xvals, yinterp, '-x') #黄色的区域
plt.show()
print(x)
# print()
使用周期性 x 坐标进行插值:
>>> x = [-180, -170, -185, 185, -10, -5, 0, 365]
>>> xp = [190, -190, 350, -350]
>>> fp = [5, 10, 3, 4]
>>> np.interp(x, xp, fp, period=360)
array([7.5 , 5. , 8.75, 6.25, 3. , 3.25, 3.5 , 3.75])
复杂插值:
>>> x = [1.5, 4.0]
>>> xp = [2,3,5]
>>> fp = [1.0j, 0, 2+3j]
>>> np.interp(x, xp, fp)
array([0.+1.j , 1.+1.5j])