算法模版,今天开始背

  1. 二分查找算法
int left_bound(int[] nums, int target) {
    int left = 0, right = nums.length - 1;
    // 搜索区间为 [left, right]
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (nums[mid] < target) {
            // 搜索区间变为 [mid+1, right]
            left = mid + 1;
        } else if (nums[mid] > target) {
            // 搜索区间变为 [left, mid-1]
            right = mid - 1;
        } else if (nums[mid] == target) {
            // 收缩右侧边界
            right = mid - 1;
        }
    }
    // 判断 target 是否存在于 nums 中
    // 如果越界,target 肯定不存在,返回 -1
    if (left < 0 || left >= nums.length) {
        return -1;
    }
    // 判断一下 nums[left] 是不是 target
    return nums[left] == target ? left : -1;
}

  1. 滑动窗口算法

上下是对称的


/* 滑动窗口算法框架 */
void slidingWindow(String s) {
    // 用合适的数据结构记录窗口中的数据
    HashMap window = new HashMap<>();

    int left = 0, right = 0;
    while (right < s.length()) {
        // c 是将移入窗口的字符
        char c = s.charAt(right);
        window.put(c, window.getOrDefault(c, 0) + 1);
        // 增大窗口
        right++;
        // 进行窗口内数据的一系列更新
        ...

        /*** debug 输出的位置 ***/
        // 注意在最终的解法代码中不要 print
        // 因为 IO 操作很耗时,可能导致超时
        System.out.printf("window: [%d, %d)\n", left, right);
        /********************/

        // 判断左侧窗口是否要收缩
        while (left < right && window needs shrink) {
            // d 是将移出窗口的字符
            char d = s.charAt(left);
            window.put(d, window.get(d) - 1);
            // 缩小窗口
            left++;
            // 进行窗口内数据的一系列更新
            ...
        }
    }
}
  1. 二叉树的层序遍历

// 输入一棵二叉树的根节点,层序遍历这棵二叉树
void levelTraverse(TreeNode root) {
    if (root == null) return;
    Queue q = new LinkedList<>();
    q.offer(root);

    // 从上到下遍历二叉树的每一层
    while (!q.isEmpty()) {
        int sz = q.size();
        // 从左到右遍历每一层的每个节点
        for (int i = 0; i < sz; i++) {
            TreeNode cur = q.poll();
            // 将下一层节点放入队列
            if (cur.left != null) {
                q.offer(cur.left);
            }
            if (cur.right != null) {
                q.offer(cur.right);
            }
        }
    }
}
  1. 动态规划算法
以最小硬币数为例
class Solution {
    int[] memo;

    int coinChange(int[] coins, int amount) {
        memo = new int[amount + 1];
        // 备忘录初始化为一个不会被取到的特殊值,代表还未被计算
        Arrays.fill(memo, -666);

        return dp(coins, amount);
    }

    int dp(int[] coins, int amount) {
        if (amount == 0) return 0;
        if (amount < 0) return -1;
        // 查备忘录,防止重复计算
        if (memo[amount] != -666)
            return memo[amount];

        int res = Integer.MAX_VALUE;
        for (int coin : coins) {
            // 计算子问题的结果
            int subProblem = dp(coins, amount - coin);
            // 子问题无解则跳过
            if (subProblem == -1) continue;
            // 在子问题中选择最优解,然后加一
            res = Math.min(res, subProblem + 1);
        }
        // 把计算结果存入备忘录
        memo[amount] = (res == Integer.MAX_VALUE) ? -1 : res;
        return memo[amount];
    }
}
  1. Nsum问题
class Solution {
    public List> fourSum(int[] nums, int target) {
        Arrays.sort(nums);
        return nSum(nums,4,0,target);
    }

    public List> nSum(int[] nums, int n, int start , long target){
        List> result = new ArrayList<>();
        if(n==2){
            int left = start;
            int right = nums.length -1 ;
            while(left collect = new ArrayList<>();
                    collect.add(leftValue);
                    collect.add(rightValue);
                    result.add(collect);    
                    while(left target){
                    right--;
                     while(left> temp = nSum(nums,n-1,i+1,target-nums[i]);
                for(List list : temp){
                    list.add(nums[i]);
                    result.add(list);
                }
                while(i

你可能感兴趣的:(算法,java,数据结构)