无条件图像生成是扩散模型的一种流行应用,它生成的图像看起来像用于训练的数据集中的图像。与文本或图像到图像模型不同,无条件图像生成不依赖于任何文本或图像。它只生成与其训练数据分布相似的图像。通常,通过在特定数据集上微调预训练模型可以获得最佳结果。
本教程主要来自huggingface官方教程,结合一些自己的修改,以支持训练本地数据集。我们首先依据官方教程,利用史密森尼蝴蝶数据集的子集上从头开始训练UNet2DModel
,以生我们自己的的蝴蝶。最后因为我是搞遥感方向的(测绘小卡拉米),所以利用遥感数据进行训练尝试,遥感影像使用的是煤矿区的无人机遥感影像,主要就是裸地和枯草,有的还有一些因为煤矿开采导致的地裂缝。
为方便起见,创建一个包含训练超参数的TrainingConfig
类(请随意调整它们):
from dataclasses import dataclass
@dataclass
class TrainingConfig:
image_size = 128 # the generated image resolution
train_batch_size = 16
eval_batch_size = 16 # how many images to sample during evaluation
num_epochs = 50
gradient_accumulation_steps = 1
learning_rate = 1e-4
lr_warmup_steps = 500
save_image_epochs = 10
save_model_epochs = 30
mixed_precision = "fp16" # `no` for float32, `fp16` for automatic mixed precision
output_dir = "ddpm-butterflies-128" # the model name locally and on the HF Hub
push_to_hub = True # whether to upload the saved model to the HF Hub
hub_private_repo = False
overwrite_output_dir = True # overwrite the old model when re-running the notebook
seed = 0
config = TrainingConfig()
对于在hug 仓库空开的数据集可以使用 Datasets依赖库轻松加载,比如本次的Smithsonian Butterflies:
from datasets import load_dataset
config.dataset_name = "huggan/smithsonian_butterflies_subset"
dataset = load_dataset(config.dataset_name, split="train")
对于本地数据请用一下代码进行加载(请根据自己情况进行修改):
from datasets import load_dataset
data_dir = "/home/diffusers/datasets/isprsdataset"
dataset = load_dataset('imagefolder', data_dir=data_dir, split='train')
Datasets使用图像功能自动解码图像数据并将其加载为PIL. Image,我们可以将其可视化:
import matplotlib.pyplot as plt
fig, axs = plt.subplots(1, 4, figsize=(16, 4))
for i, image in enumerate(dataset[:4]["image"]):
axs[i].imshow(image)
axs[i].set_axis_off()
fig.show()
由于图像大小不同,所以需要先对其进行预处理,也就是常规的图像增强:
image_size
。RandomHorizontalFlip
通过随机镜像图像来增强数据集。Normalize
对于将像素值重新缩放到[-1,1]范围内很重要,这是模型所期望的。from torchvision import transforms
preprocess = transforms.Compose(
[
transforms.Resize((config.image_size, config.image_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5835, 0.5820, 0.5841], [0.1149, 0.1111, 0.1064]), # isprs
# transforms.Normalize([0.5], [0.5]),
]
)
这里使用的是Pytorch
自带的数据增强接口,这里我推荐大家使用albumentations
数据增强库。
使用Datasets
的set_transform
方法在训练期间动态应用预处理函数:
def transform(examples):
images = [preprocess(image.convert("RGB")) for image in examples["image"]]
return {"images": images}
dataset.set_transform(transform)
现在将数据集包装在DataLoader
中进行训练:
import torch
python
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True)
Diffusers 中的预训练模型可以使用您想要的参数从它们的模型类轻松创建。例如,要创建UNet2DModel
:
from diffusers import UNet2DModel
model = UNet2DModel(
sample_size=config.image_size, # the target image resolution
in_channels=3, # the number of input channels, 3 for RGB images
out_channels=3, # the number of output channels
layers_per_block=2, # how many ResNet layers to use per UNet block
block_out_channels=(128, 128, 256, 256, 512, 512), # the number of output channels for each UNet block
down_block_types=(
"DownBlock2D", # a regular ResNet downsampling block
"DownBlock2D",
"DownBlock2D",
"DownBlock2D",
"AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention
"DownBlock2D",
),
up_block_types=(
"UpBlock2D", # a regular ResNet upsampling block
"AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
"UpBlock2D",
),
)
检查样本图像形状与模型输出形状是否匹配:
sample_image = dataset[0]["images"].unsqueeze(0)
print("Input shape:", sample_image.shape)
print("Output shape:", model(sample_image, timestep=0).sample.shape)
接下来创建一个scheduler
为图像添加一些噪点。
根据您是使用模型进行训练还是推理,scheduler的行为会有所不同。在推理期间,scheduler从噪声中生成图像。在训练期间,scheduler从扩散过程中的特定点获取模型输出或样本,并根据噪声时间表和更新规则(比如我们本系列第一张所说的step)将噪声应用于图像。(我们可以看到,遥感影像生成的结果还行,已经能明显的看清楚地表和枯草,甚至能够出现可看清的地裂缝!)
让我们看看DDPMScheduler
并使用add_noise
方法向之前的sample_image
添加一些随机噪声:
import torch
from PIL import Image
from diffusers import DDPMScheduler
noise_scheduler = DDPMScheduler(num_train_timesteps=1000)
noise = torch.randn(sample_image.shape)
timesteps = torch.LongTensor([50])
noisy_image = noise_scheduler.add_noise(sample_image, noise, timesteps)
Image.fromarray(((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5).type(torch.uint8).numpy()[0])
模型的训练目标是预测添加到图像中的噪声。该步骤的损失可以通过以下方式计算,这里官方教程使用的是mse损失函数:
import torch.nn.functional as F
noise_pred = model(noisy_image, timesteps).sample
loss = F.mse_loss(noise_pred, noise)
到目前为止,已经有了开始训练模型的大部分部分,剩下的就是把所有东西放在一起。 首先,您需要一个优化器和一个学习率调度器:
from diffusers.optimization import get_cosine_schedule_with_warmup
optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
lr_scheduler = get_cosine_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=config.lr_warmup_steps,
num_training_steps=(len(train_dataloader) * config.num_epochs),
)
然后,您需要一种评估模型的方法。对于评估,您可以使用DDPMPipeline
生成一批示例图像并将其保存为网格格式(官方输出为格网,大家也可自行修改为单张保存):
from diffusers import DDPMPipeline
import math
import os
def make_grid(images, rows, cols):
w, h = images[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, image in enumerate(images):
grid.paste(image, box=(i % cols * w, i // cols * h))
return grid
def evaluate(config, epoch, pipeline):
# Sample some images from random noise (this is the backward diffusion process).
# The default pipeline output type is `List[PIL.Image]`
images = pipeline(
batch_size=config.eval_batch_size,
generator=torch.manual_seed(config.seed),
).images
# Make a grid out of the images
image_grid = make_grid(images, rows=2, cols=3)
# Save the images
test_dir = os.path.join(config.output_dir, "samples")
os.makedirs(test_dir, exist_ok=True)
image_grid.save(f"{test_dir}/{epoch + 1:04d}.png")
现在,可以使用Accelerate将所有这些组件包装在一个训练循环中,以便于TensorBoard日志记录、梯度累积和混合精度训练。
def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler):
# Initialize accelerator and tensorboard logging
accelerator = Accelerator(
mixed_precision=config.mixed_precision,
gradient_accumulation_steps=config.gradient_accumulation_steps,
log_with="tensorboard",
project_dir=os.path.join(config.output_dir, "logs"),
)
if accelerator.is_main_process:
if config.push_to_hub:
repo_name = get_full_repo_name(Path(config.output_dir).name)
repo = Repository(config.output_dir, clone_from=repo_name)
elif config.output_dir is not None:
os.makedirs(config.output_dir, exist_ok=True)
accelerator.init_trackers("train_example")
# Prepare everything
# There is no specific order to remember, you just need to unpack the
# objects in the same order you gave them to the prepare method.
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
global_step = 0
# Now you train the model
for epoch in range(config.num_epochs):
progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)
progress_bar.set_description(f"Epoch {epoch + 1}")
for step, batch in enumerate(train_dataloader):
clean_images = batch["images"]
# Sample noise to add to the images
noise = torch.randn(clean_images.shape).to(clean_images.device)
bs = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, noise_scheduler.config.num_train_timesteps, (bs,), device=clean_images.device
).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
with accelerator.accumulate(model):
# Predict the noise residual
noise_pred = model(noisy_images, timesteps, return_dict=False)[0]
loss = F.mse_loss(noise_pred, noise)
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
global_step += 1
# After each epoch you optionally sample some demo images with evaluate() and save the model
if accelerator.is_main_process:
pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler)
if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:
print(f'----------------------------------------------------- Evaluate Iter [{(epoch + 1) // config.save_image_epochs}] ------------------------------------------------------------------')
evaluate(config, epoch, pipeline)
if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1:
pipeline.save_pretrained(config.output_dir)
接下来使用Accelerate的notebook_launcher
函数启动训练了。将训练循环、所有训练参数和进程数(可以将此值更改为可用于训练的GPU数)传递给该函数:
from accelerate import notebook_launcher
args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler)
notebook_launcher(train_loop, args, num_processes=1)
训练完成后,看看扩散模型生成的最终图像(我隔10个epoch生成一次,在下面给大家瞅瞅)和遥感影像(因为我电脑的原因,遥感影像跑了一半停了,不过也保存了一些,感慨一下,扩散模型太吃显存了,比之前跑分割检测啥的更加依赖,可能是我图像整的太大了,之后裁小一点试一试,感觉生成模型用于遥感领域,又困难,也有无限可能!这只是一个简单的扩散生成示例模型,还得再深入研究研究,以后再和大家分享其他更新又有意思的生成模型。
import glob
sample_images = sorted(glob.glob(f"{config.output_dir}/samples/*.png"))
Image.open(sample_images[-1])