[学习笔记] 二项式反演

  • 由于某种原因这篇文章到现在才被发出来。
  • 其实本质上是容斥,虽然我之前一直不是很理解这个容斥。
  • 给定 k ∈ N k \in \mathbb N kN,则存在以下关系式: g k = ∑ i = k n ( i k ) f i ⇔ f k = ∑ i = k n ( − 1 ) i − k ( i k ) g i g_k = \sum \limits_{i = k}^{n} \binom{i}{k}f_i \Leftrightarrow f_k = \sum \limits_{i = k}^{n} (-1)^{i - k} \binom{i}{k}g_i gk=i=kn(ki)fifk=i=kn(1)ik(ki)gi
  • 证明:
    ∑ i = k n ( − 1 ) i − k ( i k ) g i = ∑ i = k n ( − 1 ) i − k ( i k ) ∑ j = i n ( j i ) f j = ∑ j = k n f j ∑ i = k j ( − 1 ) i − k ( i k ) ( j i ) = ∑ j = k n f j ∑ i = k j ( − 1 ) i − k ( j k ) ( j − k i − k ) = ∑ j = k n ( j k ) f j ∑ i = 0 j − k ( − 1 ) i ( j − k i ) = ∑ j = k n ( j k ) f j ( 1 − 1 ) j − k \begin{aligned} \sum \limits_{i = k}^{n} (-1)^{i - k} \binom{i}{k}g_i &= \sum \limits_{i = k}^{n}(-1)^{i - k} \binom{i}{k} \sum \limits_{j = i}^{n} \binom{j}{i} f_j \\ &= \sum \limits_{j = k}^{n} f_j\sum \limits_{i = k}^{j} (-1)^{i - k} \binom{i}{k}\binom{j}{i}\\ &= \sum \limits_{j = k}^{n} f_j\sum \limits_{i = k}^{j} (-1)^{i - k} \binom{j}{k}\binom{j - k}{i - k}\\ &= \sum \limits_{j = k}^{n} \binom{j}{k} f_j \sum \limits_{i = 0}^{j - k} (-1)^{i} \binom{j - k}{i}\\ &= \sum \limits_{j = k}^{n} \binom{j}{k} f_j (1 - 1)^{j - k}\\ \end{aligned} i=kn(1)ik(ki)gi=i=kn(1)ik(ki)j=in(ij)fj=j=knfji=kj(1)ik(ki)(ij)=j=knfji=kj(1)ik(kj)(ikjk)=j=kn(kj)fji=0jk(1)i(ijk)=j=kn(kj)fj(11)jk
  • 当且仅当 j = k j = k j=k 时, ( 1 − 1 ) j − k (1 - 1)^{j - k} (11)jk 1 1 1,其余情况下均为 0 0 0
  • 所以原式即为 f k f_k fk

你可能感兴趣的:(学习笔记,二项式反演,组合数学)