【C语言】深度剖析数据在内存中的存储

一、数据类型详细介绍

1、数据类型介绍

(1)基本的内置类型
//内置类型就是C语言自带的类型

char        //字符数据类型
short       //短整型
int         //整形
long        //长整型
long long   //更长的整形
float       //单精度浮点数
double      //双精度浮点数

:C语言中没有字符串类型。

(2)类型的意义
  • 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
  • 如何看待内存空间的视角。

2、类型的基本归类 

(1)整型
char
        unsigned char
        signed char

short
        unsigned short [int]
        signed short [int]

int
        unsigned int
         signed int

long
        unsigned long [int]
        signed long [int]
(2)浮点数
float
double
(3)构造类型
> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union
(4)指针类型
int* pi;
char* pc;
float* pf;
void* pv;
(5)空类型

void表示空类型(无类型)

通常应用于函数的返回类型、函数的参数、指针类型


二、整型在内存中的存储

⚪原码、反码、补码

计算机中的有符号数有三种表示方法,即原码、反码和补码

三种表示方法均有符号位和数值位两部分,符号位都是用 0 表示 “正”,用 1 表示 “负”,而数值位三种表示方法各不相同

⚪原码

直接将二进制按照正负数的形式翻译成二进制就可以。

⚪反码

将原码的符号位不变其他位依次按位取反就可以得到了。

⚪补码

反码 +1 就得到补码

【C语言】深度剖析数据在内存中的存储_第1张图片


 正数的原、反、补码都相同。

【C语言】深度剖析数据在内存中的存储_第2张图片

【C语言】深度剖析数据在内存中的存储_第3张图片

对于整形来说:数据存放内存中其实存放的是补码


为什么在计算机系统中,数值一律用补码来表示和存储呢?

原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

在内存中的存储: 

【C语言】深度剖析数据在内存中的存储_第4张图片

 【C语言】深度剖析数据在内存中的存储_第5张图片

 

补码:1111 1111 1111 1111 1111 1111 1111 0110 (-10的补码)
           f        f       f       f       f        f       f      6(-10的十六进制)
我们可以看到对于 a b 分别存储的是补码。但是我们发现顺序有点 不对劲,  这是为什么呢?

三、大小端介绍

1、什么是大小端

  • 大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中
  • 小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中

【C语言】深度剖析数据在内存中的存储_第6张图片 


2、为什么会有大端和小端呢? 

        这是因为在计算机系统中,是以字节为单位的,每个地址单元都对应着一个字节,一个字节为 8 bit。但是在  语言中除了  8bit  的  char  之外,还有  16bit  的  short  型, 32bit  的  long  型(要看具体的编译器)。另外,对于位数大于 8  位的处理器,例如  16  位或者  32  位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如果将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
        例如一个 16bit 的 short x ,在内存中的地址为 0x0010 x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的 ARM DSP 都为小端模式。有些ARM 处理器还可以由硬件来选择是大端模式还是小端模式。

下面这段代码会输出什么呢? 

#include 

int main()
{
    char a= -1;
    signed char b=-1;
    unsigned char c=-1;
    printf("a=%d,b=%d,c=%d",a,b,c);
    return 0;
}

 

【C语言】深度剖析数据在内存中的存储_第7张图片

【C语言】深度剖析数据在内存中的存储_第8张图片

帮助理解: 

【C语言】深度剖析数据在内存中的存储_第9张图片

:char 是 signed char 还是 unsigned char。C 语言并没有规定,取决于编译器(大多数编译器下是 signed char)。


四、浮点型在内存中的存储

1、常见的浮点数

3.14159 1E10 浮点数家族包括: float double long double 类型。
浮点数表示的范围: float.h 中定义。 ​​​​​​​​​​​

2、标准规定 

根据国际标准 IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式(了解即可):

  • (-1)^S * M * 2^E
  • (-1)^S 表示符号位当 S=0,V为正数;当 S=1,V为负数
  • M 表示有效数字大于等于1,小于2
  • 2^E 表示指数位
举例来说:
十进制的  5.0 ,写成二进制是 101.0 ,相当于 1.01×2^2 。 那么,按照上面 V 的格式,可以得出S =0 ,M=1.01, E=2
十进制的  -5.0 ,写成二进制是 - 101.0 ,相当于 - 1.01×2^2 。那么,S =1 M=1.01 E=2
IEEE 754 规定:
对于  32  位的浮点数, 最高的 1 位是符号位 S,接着的 8 位是指数 E,剩下的 23 位为有效数字M
【C语言】深度剖析数据在内存中的存储_第10张图片

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M

【C语言】深度剖析数据在内存中的存储_第11张图片

        IEEE 754对有效数字 M 和指数 E ,还有一些特别规定。 前面说过, 1≤M<2 ,也就是说, M 可以写成 1.xxxxxx 的形式,其中 xxxxxx  表示小数部分。
        IEEE 754规定,在计算机内部保存 M 时,默认这个数的第一位总是 1 ,因此可以被舍去,只保存后面的  xxxxxx  部分。比如保存 1.01  的时候,只保存  01 ,等到读取的时候,再把第一位的 1 加上去。这样做的目的,是节省 1 位有效数字。以32 位浮点数为例,留给 M 只有 23 位,将第一位的 1 舍去以后,等于可以保存 24 位有效数字。
至于指数 E ,情况就比较复杂。
        首先, E为一个无符号整数(unsigned int 这意味着,如果 E  为  8 位,它的取值范围为  0~255 ;如果  11 位,它的取值范围为 0~2047 。但是,科学计数法中的  是可以出现负数的,所以 IEEE 754  规定,存入内存时  的真实值必须再加上一个中间数,对于 8  位的  E ,这个中间数是 127 ;对于  11  位的  E ,这个中间数是  1023 。比如, 2^10  的  E 是 10 ,所以保存成  32  位浮点数时,必须保存成  10+127=137 ,即 10001001。

然后,指数E从内存中取出还可以再分成种情况:

⚪E 不全为 0 或不全为 1
这时,浮点数就采用下面的规则表示,即指数  的计算值减去  127 (或 1023 ),得到真实值,再将有效数字  前加上第一位的 1 。 比如: 0.5 1/2 )的二进制形式为  0.1 ,由于规定正数部分必须为  1 ,即将小数点右移  1 位,则为  1.0*2^(-1) ,其阶码为  -1+127=126 ,表示为 01111110 ,而尾数  1.0  去掉整数部分为  0 ,补齐  到  23 位 00000000000000000000000 ,则其二进制表示形式为
0 01111110 00000000000000000000000
⚪E全为0
这时,浮点数的指数 E 等于 1~127(或者 1~1023 )即为真实值,
有效数字 M 不再加上第一位的 1,而是还原为 0.xxxxxx 的小数。这样做是为了表示 ±0,以及接近于 0 的很小的数字。

⚪E全为1

这时,如果有效数字 M 全为 0,表示 ±无穷大(正负取决于符号位S);

浮点数存储的例子:

int main()
{
    int n = 9; //以整型的视角放入
    float *pFloat = (float *)&n;
    printf("n的值为:%d\n",n); //以整型的视角拿出
    printf("*pFloat的值为:%f\n",*pFloat); //以浮点型的视角拿出

    *pFloat = 9.0; //以浮点型的视角放入
    printf("num的值为:%d\n",n); //以整型的视角拿出
    printf("*pFloat的值为:%f\n",*pFloat); //以浮点型的视角拿出
    return 0;
}

【C语言】深度剖析数据在内存中的存储_第12张图片 

 num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

 分析如下:

【C语言】深度剖析数据在内存中的存储_第13张图片

 【C语言】深度剖析数据在内存中的存储_第14张图片

你可能感兴趣的:(初学者,C语言,学习,c语言,学习,开发语言)