样本标准差的简单计算

8个学生分数的样本观察值: 2,4,4,4,5,5,7,9

样本均值:

x¯====xNx1+x2++xnN2+4+4+4+5+5+7+985

(xix¯)2 :
(x1x¯)2=(25)2=9(x3x¯)2=(45)2=1(x5x¯)2=(55)2=0(x7x¯)2=(75)2=4(x2x¯)2=(45)2=1(x4x¯)2=(45)2=1(x6x¯)2=(55)2=0(x8x¯)2=(95)2=16

方差:

(xx¯)2N==9+1+1+1+0+0+4+1684

标准差:
(xx¯)2N=4=2

上述样本标准差作为总体标准差的估计值偏差较大,称作 Uncorrected sample standard deviation。估计量评选基本标准有 无偏性、有效性、相合性,很难有都满足的情况,一般用 Bessel的纠正方法[2],作为样本标准差对总体标准差无偏估计量, Corrected sample standard deviation

An unbiased estimator for the variance is given by applying Bessel’s correction, using N − 1 instead of N to yield the unbiased sample variance, denoted s2

s2=1N1i=1N(xx¯)2

标准差:

s=1N1i=1N(xx¯)2

参照:

[1] https://en.wikipedia.org/wiki/Standard_deviation
[2] https://en.wikipedia.org/wiki/Bessel%27s_correction
[3] http://www.techbookreport.com/tutorials/stddev-30-secs.html

你可能感兴趣的:(数学,统计学)