数学建模(三)整数规划

视频推荐:B站_数学建模老哥

一、整数规划基本原理

数学规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法,往往只适用于整数线性规划。目前还没有一种方法能有效地求解一切整数规划。

1.1 整数规划的分类

(1)变量全限制为整数时,称纯(完全)整数规划。
(2)变量部分限制为整数的,称混合整数规划。

1.2 整数规划的特点

1. 原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:

    (1)原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致

    (2)整数规划可能不存在可行解

    (3)有可行解(当然就存在最优解),但最优解值变差。

2. 整数规划最优解不能按照实数最优解简单取整而获得

1.3 案例

合理下料问题:

设用某型号的圆钢下零件A1,A2...,Am的毛坯。在一根圆钢上下料的方式有B1,B2,... Bn种,每种下料方式可以得到各种零件的毛坯数以及每种零件的需要量,如表所示。问怎样安排下料方式,使得即满足需要,所用的原材料又最少?

如表所示:

数学建模(三)整数规划_第1张图片

 模型

数学建模(三)整数规划_第2张图片

其中,xj表示用Bj种方式下料根数,aij为每种下料方式可以得到各种零件的毛坯数,bi每种零件的需要量

1.4  整数规划的数学模型一般形式

数学建模(三)整数规划_第3张图片

 

你可能感兴趣的:(数学建模,数学建模)