代码基于yolov5 v6.0
目录:
yolo.py 用于搭建 yolov5 的网络模型,主要包含 3 部分:
Model(仅注释了 init 函数):
class Model(nn.Module):
# YOLOv5 model
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
super().__init__()
if isinstance(cfg, dict):
self.yaml = cfg # model dict
else: # is *.yaml
import yaml
self.yaml_file = Path(cfg).name
with open(cfg, encoding='ascii', errors='ignore') as f:
self.yaml = yaml.safe_load(f)
# Define model
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
if nc and nc != self.yaml['nc']:
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
self.yaml['nc'] = nc # override yaml value
if anchors:
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
self.yaml['anchors'] = round(anchors) # override yaml value
# 根据配置搭建网络
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
self.inplace = self.yaml.get('inplace', True)
# 计算生成 anchors 时的步长
m = self.model[-1] # Detect()
if isinstance(m, Detect):
s = 256 # 2x min stride
m.inplace = self.inplace
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
check_anchor_order(m) # must be in pixel-space (not grid-space)
m.anchors /= m.stride.view(-1, 1, 1)
self.stride = m.stride
self._initialize_biases() # only run once
# Init weights, biases
initialize_weights(self)
self.info()
LOGGER.info('')
parse_model:
def parse_model(d, ch): # model_dict, input_channels(3)
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
# layers: 保存每一层的结构
# save: 记录 from 不是 -1 的层,即需要多个输入的层如 Concat 和 Detect 层
# c2: 当前层输出的特征图数量
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
for i, (f, n, m, args) in enumerate(
d['backbone'] + d['head']): # from:-1, number:1, module:'Conv', args:[64, 6, 2, 2]
m = eval(m) if isinstance(m, str) else m # eval strings, m:
# 数字、列表直接放入args[i],字符串通过 eval 函数变成模块
for j, a in enumerate(args):
try:
args[j] = eval(a) if isinstance(a, str) else a # eval strings, [64, 6, 2, 2]
except NameError:
pass
# 对数量大于1的模块和 depth_multiple 相乘然后四舍五入
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
# 实例化 ymal 文件中的每个模块
if m in (Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
BottleneckCSP, C3, C3TR, C3SPP, C3Ghost,SE, FSM):
c1, c2 = ch[f], args[0] # 输入特征图数量(f指向的层的输出特征图数量),输出特征图数量
# 如果输出层的特征图数量不等于 no (Detect输出层)
# 则将输出图的特征图数量乘 width_multiple ,并调整为 8 的倍数
if c2 != no: # if not output
c2 = make_divisible(c2 * gw, 8)
args = [c1, c2, *args[1:]] # 默认参数格式:[输入, 输出, 其他参数……]
# 参数有特殊格式要求的模块
if m in [BottleneckCSP, C3, C3TR, C3Ghost, CSPStage]:
args.insert(2, n) # number of repeats
n = 1
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum(ch[x] for x in f)
elif m is Detect:
args.append([ch[x] for x in f])
if isinstance(args[1], int): # number of anchors
args[1] = [list(range(args[1] * 2))] * len(f)
elif m is Contract:
c2 = ch[f] * args[0] ** 2
elif m is Expand:
c2 = ch[f] // args[0] ** 2
else:
c2 = ch[f]
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
np = sum(x.numel() for x in m_.parameters()) # number params
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
ch.append(c2)
return nn.Sequential(*layers), sorted(save)