**日志,**由服务器自动创建,并记录运行状态,错误信息,访问数据的文件。
同步日志,日志写入函数与工作线程串行执行,由于涉及到I/O操作,当单条日志比较大的时候,同步模式会阻塞整个处理流程,服务器所能处理的并发能力将有所下降,尤其是在峰值的时候,写日志可能成为系统的瓶颈。
生产者-消费者模型,并发编程中的经典模型。以多线程为例,为了实现线程间数据同步,生产者线程与消费者线程共享一个缓冲区,其中生产者线程往缓冲区中push消息,消费者线程从缓冲区中pop消息。
阻塞队列,将生产者-消费者模型进行封装,使用循环数组实现队列,作为两者共享的缓冲区。
异步日志,将所写的日志内容先存入阻塞队列,写线程从阻塞队列中取出内容,写入日志。
单例模式,保证一个类只创建一个实例,同时提供全局访问的方法。
使用单例模式创建日志系统,对服务器运行状态、错误信息和访问数据进行记录,该系统可以实现按天分类,超行分类功能,可以根据实际情况分别使用同步和异步写入两种方式。
异步写入方式,将生产者-消费者模型封装为阻塞队列,创建一个写线程,工作线程将要写的内容push进队列,写线程从队列中取出内容,写入日志文件。
日志系统大致可以分为两部分,其一是单例模式与阻塞队列的定义,其二是日志类的定义与使用。
介绍单例模式与阻塞队列的定义,涉及单例模式、生产者-消费者模型、阻塞队列的代码实现。
单例模式,描述懒汉与饿汉两种单例模式,并结合线程安全进行讨论。
生产者-消费者模型,描述条件变量,基于该同步机制实现简单的生产者-消费者模型。
代码实现,结合代码对阻塞队列的设计进行详解。
单例模式,保证一个类仅有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享。
实现思路:私有化它的构造函数,以防止外界创建单例类的对象;使用类的私有静态指针变量指向类的唯一实例,并用一个公有的静态方法获取该实例。
单例模式有两种实现方法,懒汉和饿汉。懒汉模式,不用的时候不去初始化,在第一次被使用时才进行初始化;饿汉模式,在程序运行时立即初始化。
双检测锁模式
class single{
private:
//私有静态指针变量指向唯一实例
static single *p;
//静态锁,是由于静态函数只能访问静态成员
static pthread_mutex_t lock;
//私有化构造函数
single(){
pthread_mutex_init(&lock,NULL);
}
~single(){}
public:
//公有静态方法获取实例
static single* getinstance();
};
pthread_mutex_t single::lock;
single* single::p=NULL;
single* single::getinstance(){
if(NULL==p){
pthread_mutex_lock(&lock);
if(NULL==p){
p=new single;
}
pthread_mutex_unlock(&lock);
}
return p;
}
为什么要双检测,只检测一次不行吗?
如果只检测一次,在每次调用获取实例的方法时,都需要加锁,这将严重影响程序性能。双层检测可以避免这种情况,仅在第一次创建单例的时候加锁,其他时候都不再符合NULL==p的情况,直接返回已创建好的实例。
双检测锁模式,写起来不太优雅。
更优雅的单例模式实现,使用函数内的局部静态对象。
class single{
private:
single(){}
~single(){}
public:
static single* getinstance();
};
single* single::getinstance(){
static single obj;
return &obj;
}
C++0X以后,要求编译器保证内部静态变量的线程安全性。在这之前仍需加锁保证线程安全。C++0X是C++11标准成为正式标准之前的草案临时名字。
class single{
private:
static pthread_mutex_t lock;
single(){
pthread_mutex_init(&lock,NULL);
}
~single(){}
public:
static single* getinstance();
};
pthread_mutex_t single::lock;
single* single::getinstance(){
pthread_mutex_lock(&lock);
static single obj;
pthread_mutex_unlock(&lock);
return &obj;
}
饿汉模式不需要加锁,就能实现线程安全。原因:在程序运行时就定义了对象,并对其初始化。之后,不管哪个线程调用成员函数getinstance(),都只不过是返回一个对象的指针而已。是线程安全的,不需要在获取实例的成员函数中加锁。
class single{
private:
static single* p;
single(){}
~single(){}
public:
static single* getinstance();
};
single* single::p=new single();
single* single::getinstance(){
return p;
}
//测试方法
int main(){
single *p1=single::getinstance();
single *p2=single::getinstance();
if(p1==p2)
cout<<"same"<<endl;
system("pause");
return 0;
}
饿汉模式存在隐藏的问题:非静态对象(函数外的static对象)在不同编译单元中的初始化顺序是未定义的。如果在初始化完成之前调用getInstance()方法会返回一个未定义的实例。
条件变量提供了一种线程间的通知机制,当某个共享数据达到某个值时,唤醒等待这个共享数据的线程。
基础API
使用pthread_cond_wait方式如下:
pthread_mutex_lock(&mutex);
while(线程执行的条件是否成立){
pthread_cond_wait(&cond,&metex);
}
pthread_mutex_unlock(&mutex);
pthread_cond_wait执行后的内部操作分为以下几步:
陷阱一
使用前要加锁,为什么要加锁?
多线程访问,为了避免资源竞争,所以要加锁,使得每个线程互斥的访问公有资源。
pthread_cond_wait内部为什么要解锁?
如果while或者if判断的时候,满足执行条件,线程便会调用pthread_cond_wait阻塞自己,此时它还在持有锁,如果它不解锁,那么其他线程将会无法访问公有资源。
具体到pthread_cond_wait的内部实现,当pthread_cond_wait被调用线程阻塞的时候,pthread_cond_wait会自动释放互斥锁。
为什么把调用线程放入条件变量的请求队列再解锁?
线程是并发执行的,如果在把调用线程A放在等待队列之前,就释放了互斥锁,这就意味着其他线程比如线程B就可以获得互斥锁去访问公有资源,这时候线程A所等待的条件改变了,但是它没有被放在等待队列上,导致A忽略了等待条件被满足的信号。
倘若在线程A调用pthread_cond_wait开始,到把A放在等待队列的过程中,都持有互斥锁,其他线程无法得到互斥锁,就不能改变公有资源。
为什么最后还要加锁?
将线程放在条件变量的请求队列后,将其解锁,此时等待被唤醒,若成功竞争到互斥锁,再次加锁。
陷阱二
为什么判断线程执行的条件用while而不是if?
一般来说,在多线程资源竞争的时候,在一个使用资源的线程里面(消费者)判断资源是否可用,不可用,便调用pthread_cond_wait,在另一个线程里面(生产者)如果判断资源可用的话,则调用pthread_cond_signal发送一个资源可用信号。
在wait成功之后,资源一定可以被使用么?答案是否定的,如果同时有两个或者两个以上的线程同时正在等待此资源,wait返回后,资源可能已经被使用了。
有可能多个线程都在等待这个资源可用的信号,信号发出后只有一个资源可用,但是有A、B两个线程都在等待,B比较速度快,获得互斥锁,然后加锁,消耗资源,然后解锁,之后A获得互斥锁,但A回去发现资源已经被使用了,它便有两个选择,一个是去访问不存在的资源,另一个就是继续等待,那么继续等待下去的条件就是使用while,要不然使用if的话pthread_cond_wait返回后,就会顺序执行下去。
在这种情况下,应该使用while而不是if:
while(resource==FALSE)
pthread_cond_wait(&cond,&mutex);
如果只有一个消费者,那么使用if是可以的。
process_msg相当于消费者,enqueue_msg相当于生产者,struct msg* workq作为缓冲队列
生产者和消费者是互斥关系,两者对缓冲区访问互斥,同时生产者和消费者又是一个相互协作与同步的关系,只有生产者生产之后,消费者才能消费。
#include
struct msg{
struct msg *m_next;
};
struct msg* workq;
pthread_cond_t qready=PTHREAD_COND_INITIALIZER;
pthread_mutex_t qlock=PTHREAD_MUTEX_INITIALIZER;
void process_msg(){
struct msg* mp;
for(;;){
pthread_mutex_lock(&qlock);
while(workq==NULL){
pthread_cond_wait(&qread,&qlock);
}
mq=workq;
workq=mp->m_next;
pthread_mutex_unlock(&qlock);
}
}
void enqueue_msg(struct msg* mp){
pthread_mutex_lock(&qlock);
mp->m_next=workq;
workq=mp;
pthread_mutex_unlock(&qlock);
pthread_cond_signal(&qready);
}
当队列为空时,从队列中获取元素的线程将会被挂起;当队列是满时,往队列里添加元素的线程将会挂起。
阻塞队列类中,有些代码比较简单,这里仅对push和pop成员进行详解。
class block_queue
{
public:
//初始化私有成员
block_queue(int max_size=1000)
{
if(max_size<=0)
{
exit(-1);
}
//构造函数创建循环数组
m_max_size=max_size;
m_array= new T[max_size];
m_size=0;
m_front=-1;
m_back=-1;
//创建互斥锁和条件变量
m_mutex=new pthread_mutex_t;
m_cond=new pthread_cond_t;
pthread_mutex_init(m_mutex,NULL);
pthread_cond_init(m_cond,NULL);
}
//往队列中添加元素,需要将所有使用队列的线程先唤醒
//当有元素push进队列,相当于生产者生产了一个元素
//若当前没有线程等待条件变量,则唤醒无意义
bool push(const T &item)
{
pthread_mutex_lock(m_mutex);
if(m_size>=m_max_size)
{
pthread_cond_broadcast(m_cond);
pthread_mutex_unlock(m_mutex);
return false;
}
//将新增数据放在循环数组的对应位置
m_back=(m_back+1)%m_max_size;
m_array[back]=item;
m_size++;
pthread_cond_broadcast(m_cond);
pthread_mutex_unlock(m_mutex);
return true;
}
//pop时,如果当前队列没有元素,将会等待条件变量
bool pop(T &item)
{
pthread_mutex_lock(m_mutex);
//多个消费者的时候,这里是用while而不是if
while(m_size<=0)
{
//当重新抢到互斥锁,pthread_cond_wait返回为0
if(0!=pthread_cond_wait(m_cond,m_mutex))
{
pthread_mutex_unlock(m_mutex);
return false;
}
}
//取出队列首的元素,使用循环数组模拟的队列
m_fornt=(m_front+1)%m_max_size;
item=m_array[m_front];
m_size--;
pthread_mutex_unlock(m_mutex);
return true;
}
//增加了超时处理
//在pthread_cond_wait基础上增加了等待的时间,只指定时间内能抢到互斥锁即可
//其他逻辑不变
bool pop(T &item,int ms_timeout)
{
struct timespec t={0,0};
struct timeval now={0,0};
gettimeofday(&now,NULL);
pthread_mutex_lock(m_mutex);
if(m_size<=0)
{
t.tv_sec=now.tv_sec+ms_timeout/1000;
t.tv_nsec=(ms_timeout%1000)*1000;
if(0!=pthread_cond_timewait(m_cond,m_mutex,&t))
{
pthread_mutex_unlock(m_mutex);
return false;
}
}
if(m_size<=0)
{
pthread_mutex_unlock(m_mutex);
return false;
}
//取出队列首的元素,使用循环数组模拟的队列
m_fornt=(m_front+1)%m_max_size;
item=m_array[m_front];
m_size--;
pthread_mutex_unlock(m_mutex);
return true;
}
};