【环境配置】Windows 10 安装 PyTorch 开发环境,以及验证 YOLOv8

Windows 10 安装 PyTorch 开发环境,以及验证 YOLOv8

最近搞了一台Windows机器,准备在上面安装深度学习的开发环境,并搭建部署YOLOv8做训练和测试使用;

环境:
OS: Windows 10
显卡: RTX 3090

在这里插入图片描述

安装 NVIDIA 驱动

根据显卡型号找到对应的驱动进行安装

GeForce® 驱动程序

验证

在终端中输入: nvidia-smi 查看是否正确安装

PS F:\workspace\notebook> nvidia-smi
Tue Aug 15 09:23:21 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 528.24       Driver Version: 528.24       CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name            TCC/WDDM | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ... WDDM  | 00000000:01:00.0  On |                  N/A |
| 30%   38C    P8    19W / 350W |    782MiB / 24576MiB |      4%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A      1620    C+G   C:\Windows\System32\dwm.exe     N/A      |
|    0   N/A  N/A      1908    C+G   ...ge\Application\msedge.exe    N/A      |

安装 Visual Studio 2019 Community

安装 VS2019 Visual Studio Community 2019

验证

【环境配置】Windows 10 安装 PyTorch 开发环境,以及验证 YOLOv8_第1张图片

安装 Git, CMake, Anaconda

安装 git,

tortoisegit 可以看文件状态

安装 cmake, 跨平台编译时使用;

安装 Anaconda,集成了很多 python 开发环境

验证

下载并安装 OpenCV

OpenCV 下载地址

VC版本号 VS对应版本
vc6 VC6.0
vc7 VS2002
vc7.1 VS2003
vc8 VS2005
vc9 VS2008
vc10 VS2010
vc11 VS2012
vc12 VS2013
vc13 VS2014
vc14 VS2015
vc15 VS2017
vc16 VS2019

既然上面安装的是 VS 2019, 那么我们就安装 VC16 版本的 OpenCV, 省得自己编译了;

解压安装后,将 build 目录下的 x64\vc16\bin 添加到环境变量中。

安装 CUDA 和 CUDNN

这里有些人可能不知道需要安装什么版本的 cuda。因为我这里的 GPU 是 N卡 3090 还是比较好的,所以可以安装比较高阶版本的软件,但是也不能太新,我这里直接参考 PyTorch 里最新版本的框架依赖哪个?

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MNJC1PNc-1692070277630)(image.png)]

好了,那就安装 CUDA 11.8 和对应的 CUDNN 8 ;

cuda11.8-exe_local-3GB

cudnn 下载对应版本

注意: cudnn 要注册账号

解压后,将 cudnn 文件夹下的所有文件夹复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\ 目录下。

验证

(base) D:\>nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:41:10_Pacific_Daylight_Time_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0

进入到安装目录 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite, 运行 .\deviceQuery.exe

【环境配置】Windows 10 安装 PyTorch 开发环境,以及验证 YOLOv8_第2张图片

安装 PyTorch

PyTorch

conda 安装

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

pip 安装

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

验证

(base) D:\>python
Python 3.11.4 | packaged by Anaconda, Inc. | (main, Jul  5 2023, 13:38:37) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> print(torch.__version__)
2.0.1
>>> torch.cuda.is_available()
True
>>>

ultralytics/YOLOv8

创建虚拟环境

conda create --name yolov8 --clone base

激活虚拟环境

conda activate yolov8

安装

pip install ultralytics

代码 https://github.com/ultralytics/ultralytics

权重 https://github.com/ultralytics/assets/releases

验证

yolo predict model=yolov8n.pt imgsz=640 conf=0.25
(yolov8) F:\workspace\yolov8>yolo predict model=yolov8n.pt imgsz=640 conf=0.25
WARNING  'source' is missing. Using default 'source=D:\anaconda3\envs\yolov8\Lib\site-packages\ultralytics\assets'.
Ultralytics YOLOv8.0.154  Python-3.11.4 torch-2.0.1 CUDA:0 (NVIDIA GeForce RTX 3090, 24576MiB)
YOLOv8n summary (fused): 168 layers, 3151904 parameters, 0 gradients

image 1/2 D:\anaconda3\envs\yolov8\Lib\site-packages\ultralytics\assets\bus.jpg: 640x480 4 persons, 1 bus, 1 stop sign, 160.2ms
image 2/2 D:\anaconda3\envs\yolov8\Lib\site-packages\ultralytics\assets\zidane.jpg: 384x640 2 persons, 1 tie, 154.0ms
Speed: 41.6ms preprocess, 157.1ms inference, 72.6ms postprocess per image at shape (1, 3, 384, 640)
Results saved to runs\detect\predict

【参考】

Windows 安装 CUDA/cuDNN

验证pytorch是否为GPU版本

YOLOv8环境搭建(Windows11)

YOLOv8 从环境搭建到推理训练

Ultralytics YOLOv8 Docs-Quickstart

Anaconda 创建,复制,移植,删除环境

你可能感兴趣的:(项目及产品管理,PyTorch,windows,pytorch,YOLO)