深入理解Java虚拟机二

一、JVM方法的调用

1.重载与重写

       在Java程序里,如果同一个类中出现多个名字相同,并且参数类型相同的方法,那么它无法通过编译。也就是说,在正常情况下,如果我们想要在同一个类中定义名字相同的方法,那么它们的参数类型必须不同。这些方法之间的关系,我们称之为重载。这个限制可以通过字节码工具绕开。也就是说,在编译完成之后,我们可以再向class文件中添加方法名和参数类型相同,而返回类型不同的方法。当这种包括多个方法名相同、参数类型相同,而返回类型不同的方法的类,出现在Java编译器的用户类路径上时,它是怎么确定需要调用哪个方法的呢?当前版本的Java编译器会直接选取第一个方法名以及参数类型匹配的方法。并且,它会根据所选取方法的返回类型来决定可不可以通过编译,以及需不需要进行值转换等。重载的方法在编译过程中即可完成识别。具体到每一个方法调用,Java编译器会根据所传入参数的声明类型(注意与实际类型区分)来选取重载方法。选取的过程共分为三个阶段:
       1. 在不考虑对基本类型自动装拆箱(auto-boxing,auto-unboxing),以及可变长参数的情况下选取重载方法;
       2. 如果在第1个阶段中没有找到适配的方法,那么在允许自动装拆箱,但不允许可变长参数的情况下选取重载方法;
       3. 如果在第2个阶段中没有找到适配的方法,那么在允许自动装拆箱以及可变长参数的情况下选取重载方法。
       如果Java编译器在同一个阶段中找到了多个适配的方法,那么它会在其中选择一个最为贴切的,而决定贴切程度的一个关键就是形式参数类型的继承关系。除了同一个类中的方法,重载也可以作用于这个类所继承而来的方法。也就是说,如果子类定义了与父类中非私有方法同名的方法,而且这两个方法的参数类型不同,那么在子类中,这两个方法同样构成了重载。那么,如果子类定义了与父类中非私有方法同名的方法,而且这两个方法的参数类型相同,那么这两个方法之间又是什么关系呢?如果这两个方法都是静态的,那么子类中的方法隐藏了父类中的方法。如果这两个方法都不是静态的,且都不是私有的,那么子类的方法重写了父类中的方法。众所周知,Java是一门面向对象的编程语言,它的一个重要特性便是多态。而方法重写,正是多态最重要的一种体现方式:它允许子类在继承父类部分功能的同时,拥有自己独特的行为。重写调用也是如此:它会根据调用者的动态类型,来选取实际的目标方法。

2.JVM静态绑定和动态绑定

       Java虚拟机识别方法的关键在于类名、方法名以及方法描述符(method descriptor)。前面两个就不做过多的解释了。至于方法描述符,它是由方法的参数类型以及返回类型所构成。在同一个类中,如果同时出现多个名字相同且描述符也相同的方法,那么Java虚拟机会在类的验证阶段报错。Java虚拟机与Java语言不同,它并不限制名字与参数类型相同,但返回类型不同的方法出现在同一个类中,对于调用这些方法的字节码来说,由于字节码所附带的方法描述符包含了返回类型,因此Java虚拟机能够准确地识别目标方法。Java虚拟机中关于方法重写的判定同样基于方法描述符。也就是说,如果子类定义了与父类中非私有、非静态方法同名的方法,那么只有当这两个方法的参数类型以及返回类型一致,Java虚拟机才会判定为重写。对于Java语言中重写而Java虚拟机中非重写的情况,编译器会通过生成桥接方法来实现Java中的重写语义。由于对重载方法的区分在编译阶段已经完成,我们可以认为Java虚拟机不存在重载这一概念。因此,在某些文章中,重载也被称为静态绑定(static binding),或者编译时多态(compile-time polymorphism);而重写则被称为动态绑定(dynamic binding)。这个说法在Java虚拟机语境下并非完全正确。这是因为某个类中的重载方法可能被它的子类所重写,因此Java编译器会将所有对非私有实例方法的调用编译为需要动态绑定的类型。确切地说,Java虚拟机中的静态绑定指的是在解析时便能够直接识别目标方法的情况,而动态绑定则指的是需要在运行过程中根据调用者的动态类型来识别目标方法的情况。具体来说,Java字节码中与调用相关的指令共有五种。
       1. invokestatic:用于调用静态方法。
       2. invokespecial:用于调用私有实例方法、构造器,以及使用super关键字调用父类的实例方法或构造器,和所实现接口的默认方法。
       3. invokevirtual:用于调用非私有实例方法。
       4. invokeinterface:用于调用接口方法。
       5. invokedynamic:用于调用动态方法。

3.虚方法的调用

       Java里所有非私有实例方法调用都会被编译成invokevirtual指令,而接口方法调用都会被编译成invokeinterface指令。这两种指令,均属于Java虚拟机中的虚方法调用。在绝大多数情况下,Java虚拟机需要根据调用者的动态类型,来确定虚方法调用的目标方法。这个过程我们称之为动态绑定。那么,相对于静态绑定的非虚方法调用来说,虚方法调用更加耗时。在Java虚拟机中,静态绑定包括用于调用静态方法的invokestatic指令,和用于调用构造器、私有实例方法以及超类非私有实例方法的invokespecial指令。如果虚方法调用指向一个标记为final的方法,那么Java虚拟机也可以静态绑定该虚方法调用的目标方法。Java虚拟机中采取了一种用空间换取时间的策略来实现动态绑定。它为每个类生成一张方法表,用以快速定位目标方法。那么方法表具体是怎样实现的呢?

4.方法表

       类加载机制的部分中,曾提到类加载的准备阶段,它除了为静态字段分配内存之外,还会构造与该类相关联的方法表。这个数据结构,便是Java虚拟机实现动态绑定的关键所在。方法表本质上是一个数组,每个数组元素指向一个当前类及其祖先类中非私有的实例方法。这些方法可能是具体的、可执行的方法,也可能是没有相应字节码的抽象方法。方法表满足两个特质:其一,子类方法表中包含父类方法表中的所有方法;其二,子类方法在方法表中的索引值,与它所重写的父类方法的索引值相同。方法调用指令中的符号引用会在执行之前解析成实际引用。对于静态绑定的方法调用而言,实际引用将指向具体的目标方法。对于动态绑定的方法调用而言,实际引用则是方法表的索引值(实际上并不仅是索引值)。在执行过程中,Java虚拟机将获取调用者的实际类型,并在该实际类型的虚方法表中,根据索引值获得目标方法。这个过程便是动态绑定。实际上,使用了方法表的动态绑定与静态绑定相比,仅仅多出几个内存解引用操作:访问栈上的调用者,读取调用者的动态类型,读取该类型的方法表,读取方法表中某个索引值所对应的目标方法。相对于创建并初始化Java栈帧来说,这几个内存解引用操作的开销简直可以忽略不计。那么我们是否可以认为虚方法调用对性能没有太大影响呢?其实是不能的,上述优化的效果看上去十分美好,但实际上仅存在于解释执行中,或者即时编译代码的最坏情况中。这是因为即时编译还拥有另外两种性能更好的优化手段:内联缓存(inlining cache)和方法内联(method inlining)。

5.内联缓存

       内联缓存是一种加快动态绑定的优化技术。它能够缓存虚方法调用中调用者的动态类型,以及该类型所对应的目标方法。在之后的执行过程中,如果碰到已缓存的类型,内联缓存便会直接调用该类型所对应的目标方法。如果没有碰到已缓存的类型,内联缓存则会退化至使用基于方法表的动态绑定。在针对多态的优化手段中,我们通常会提及以下三个术语。
       1. 单态(monomorphic)指的是仅有一种状态的情况。
       2. 多态(polymorphic)指的是有限数量种状态的情况。二态(bimorphic)是多态的其中一种。
       3. 超多态(megamorphic)指的是更多种状态的情况。通常我们用一个具体数值来区分多态和超多态。在这个数值之下,我们称之为多态。否则,我们称之为超多态。
       对于内联缓存来说,我们也有对应的单态内联缓存、多态内联缓存和超多态内联缓存。单态内联缓存,顾名思义,便是只缓存了一种动态类型以及它所对应的目标方法。它的实现非常简单:比较所缓存的动态类型,如果命中,则直接调用对应的目标方法。多态内联缓存则缓存了多个动态类型及其目标方法。它需要逐个将所缓存的动态类型与当前动态类型进行比较,如果命中,则调用对应的目标方法。一般来说,我们会将更加热门的动态类型放在前面。在实践中,大部分的虚方法调用均是单态的,也就是只有一种动态类型。为了节省内存空间,Java虚拟机只采用单态内联缓存。前面提到,当内联缓存没有命中的情况下,Java虚拟机需要重新使用方法表进行动态绑定。对于内联缓存中的内容,我们有两种选择。一是替换单态内联缓存中的纪录。这种做法就好比CPU中的数据缓存,它对数据的局部性有要求,即在替换内联缓存之后的一段时间内,方法调用的调用者的动态类型应当保持一致,从而能够有效地利用内联缓存。因此,在最坏情况下,我们用两种不同类型的调用者,轮流执行该方法调用,那么每次进行方法调用都将替换内联缓存。也就是说,只有写缓存的额外开销,而没有用缓存的性能提升。
       另外一种选择则是劣化为超多态状态。这也是Java虚拟机的具体实现方式。处于这种状态下的内联缓存,实际上放弃了优化的机会。它将直接访问方法表,来动态绑定目标方法。与替换内联缓存纪录的做法相比,它牺牲了优化的机会,但是节省了写缓存的额外开销。具体到我们的例子,如果来了一队乘客,其中外国人和中国人依次隔开,那么在重复使用的单态内联缓存中,导航员需要反复记住上个出境的乘客,而且记住的信息在处理下一乘客时又会被替换掉。因此,倒不如一直不记,以此来节省脑细胞。虽然内联缓存附带内联二字,但是它并没有内联目标方法。这里需要明确的是,任何方法调用除非被内联,否则都会有固定开销。这些开销来源于保存程序在该方法中的执行位置,以及新建、压入和弹出新方法所使用的栈帧。对于极其简单的方法而言,比如说getter/setter,这部分固定开销占据的CPU时间甚至超过了方法本身。此外,在即时编译中,方法内联不仅仅能够消除方法调用的固定开销,而且还增加了进一步优化的可能性。

6.Java的异常

       异常处理的两大组成要素是抛出异常和捕获异常。这两大要素共同实现程序控制流的非正常转移。抛出异常可分为显式和隐式两种。显式抛异常的主体是应用程序,它指的是在程序中使用“throw”关键字,手动将异常实例抛出。隐式抛异常的主体则是Java虚拟机,它指的是Java虚拟机在执行过程中,碰到无法继续执行的异常状态,自动抛出异常。举例来说,Java虚拟机在执行读取数组操作时,发现输入的索引值是负数,故而抛出数组索引越界异常(ArrayIndexOutOfBoundsException)。
       在Java语言规范中,所有异常都是Throwable类或者其子类的实例。Throwable有两大直接子类。第一个是Error,涵盖程序不应捕获的异常。当程序触发Error时,它的执行状态已经无法恢复,需要中止线程甚至是中止虚拟机。第二子类则是Exception,涵盖程序可能需要捕获并且处理的异常。Exception有一个特殊的子类RuntimeException,用来表示“程序虽然无法继续执行,但是还能抢救一下”的情况。前边提到的数组索引越界便是其中的一种。RuntimeException和Error属于Java里的非检查异常(unchecked exception)。其他异常则属于检查异常(checked exception)。在Java语法中,所有的检查异常都需要程序显式地捕获,或者在方法声明中用throws关键字标注。通常情况下,程序中自定义的异常应为检查异常,以便最大化利用Java编译器的编译时检查。使用异常捕获的代码为什么比较耗费性能?异常实例的构造十分昂贵。这是由于在构造异常实例时,Java虚拟机便需要生成该异常的栈轨迹(stack trace)。该操作会逐一访问当前线程的Java栈帧,并且记录下各种调试信息,包括栈帧所指向方法的名字,方法所在的类名、文件名,以及在代码中的第几行触发该异常。当然,在生成栈轨迹时,Java虚拟机会忽略掉异常构造器以及填充栈帧的Java方法(Throwable.fillInStackTrace),直接从新建异常位置开始算起。此外,Java虚拟机还会忽略标记为不可见的Java方法栈帧。既然异常实例的构造十分昂贵,我们是否可以缓存异常实例,在需要用到的时候直接抛出呢?从语法角度上来看,这是允许的。然而,该异常对应的栈轨迹并非throw语句的位置,而是新建异常的位置。因此,这种做法可能会误导开发人员,使其定位到错误的位置。这也是为什么在实践中,我们往往选择抛出新建异常实例的原因。finally是怎么实现无论异常与否都能被执行的?这个事情是由编译器来实现的,做法是编译器在编译Java代码时,会复制finally代码块的内容,然后分别放在try-catch代码块所有的正常执行路径及异常执行路径的出口中。

你可能感兴趣的:(深入理解Java虚拟机二)