这是《玩转线性代数》的学习笔记
少壮不努力,老大徒伤悲,学校里没学好,工作多年后又从头看,两行泪。。。
除主对角线外的其它元素都为零
∣ λ 1 ⋱ λ n ∣ \begin{vmatrix} \lambda_1\\ & \ddots & \\ & & \lambda_n \end{vmatrix} ∣∣∣∣∣∣λ1⋱λn∣∣∣∣∣∣
令 λ i = a i i \lambda_i=a_{ii} λi=aii:
∣ λ 1 ⋱ λ n ∣ = ∣ a 11 ⋱ a n n ∣ = Σ p 1 . . . p n ( − 1 ) t a 1 p 1 a 2 p 2 . . . a n p n \begin{vmatrix} \lambda_1\\ & \ddots & \\ & & \lambda_n \end{vmatrix}=\begin{vmatrix} a_{11}\\ & \ddots & \\ & & a_{nn} \end{vmatrix}=\Sigma_{p_1...p_n}(-1)^ta_{1p_1}a_{2p_2}...a_{np_n} ∣∣∣∣∣∣λ1⋱λn∣∣∣∣∣∣=∣∣∣∣∣∣a11⋱ann∣∣∣∣∣∣=Σp1...pn(−1)ta1p1a2p2...anpn
当 i ≠ j i\neq j i=j时, a i j = 0 a_{ij}=0 aij=0,因此只有对角线元素相乘项不为0,且符号为正。故原式 = λ 1 . . . λ n =\lambda_1...\lambda_n =λ1...λn
除副对角线外的其它元素都为零
∣ λ 1 ⋯ λ n ∣ \begin{vmatrix} & & \lambda_1\\ & \cdots & \\ \lambda_n \end{vmatrix} ∣∣∣∣∣∣λn⋯λ1∣∣∣∣∣∣
令 λ i = a i ( n − i + 1 ) \lambda_i=a_{i(n-i+1)} λi=ai(n−i+1):
∣ λ 1 ⋯ λ n ∣ = ∣ a 1 n ⋯ a n 1 ∣ = Σ p 1 . . . p n ( − 1 ) t a 1 p 1 a 2 p 2 . . . a n p n = ( − 1 ) τ [ n ( n − 1 ) − 321 ] a 1 n a 2 ( n − 1 ) ⋯ a n 1 = ( − 1 ) 1 2 n ( n − 1 ) λ 1 . . . λ n \begin{vmatrix} & & \lambda_1\\ & \cdots & \\ \lambda_n \end{vmatrix}=\begin{vmatrix} & & a_{1n}\\ & \cdots & \\ a_{n1} \end{vmatrix}=\Sigma_{p_1...p_n}(-1)^ta_{1p_1}a_{2p_2}...a_{np_n} =(-1)^{\tau[n(n-1)-321]}a_{1n}a_{2(n-1)}\cdots a_{n1}=(-1)^{\frac{1}{2}n(n-1)}\lambda_1...\lambda_n ∣∣∣∣∣∣λn⋯λ1∣∣∣∣∣∣=∣∣∣∣∣∣an1⋯a1n∣∣∣∣∣∣=Σp1...pn(−1)ta1p1a2p2...anpn=(−1)τ[n(n−1)−321]a1na2(n−1)⋯an1=(−1)21n(n−1)λ1...λn
主对角线以下(上)的元素全为0,称为上(下)三角行列式,以上三角为例:
D = ∣ a 11 a 12 ⋯ a 1 n 0 a 22 ⋯ a 2 n 0 0 ⋯ ⋯ ⋮ ⋮ ⋱ ⋮ 0 0 0 a n m ∣ D=\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ 0 & 0 & \cdots & \cdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & a_{nm} \end{vmatrix} D=∣∣∣∣∣∣∣∣∣∣∣a1100⋮0a12a220⋮0⋯⋯⋯⋱0a1na2n⋯⋮anm∣∣∣∣∣∣∣∣∣∣∣
不含0的项只有对角线,因此 D = a 11 a 22 ⋯ a n n D=a_{11}a_{22}\cdots a_{nn} D=a11a22⋯ann。
对二阶行列式 D = ∣ a 1 a 2 b 1 b 2 ∣ D=\begin{vmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \\ \end{vmatrix} D=∣∣∣∣a1b1a2b2∣∣∣∣,把每一行都当成一个向量,记为 a = ( a 1 , a 2 ) , b = ( b 1 , b 2 ) a=(a_1,a_2),b=(b_1,b_2) a=(a1,a2),b=(b1,b2), α , β \alpha,\beta α,β为向量 a , b a,b a,b与x轴的顺时针方向的夹角,黄色部分为向量 a 、 b a、b a、b张成的平行四边形,其中 ∣ ∣ a ∣ ∣ ∣ ∣ b ∣ ∣ {||a|| \ ||b ||} ∣∣a∣∣ ∣∣b∣∣为向量 a , b a,b a,b的长度,见下图(来源):
则有:
∣ a 1 a 2 b 1 b 2 ∣ = a 1 b 2 − a 2 b 1 = ∣ ∣ a ∣ ∣ ∣ ∣ b ∣ ∣ ∣ ∣ a ∣ ∣ ∣ ∣ b ∣ ∣ ( a 1 b 2 − a 2 b 1 ) = ∣ ∣ a ∣ ∣ ∣ ∣ b ∣ ∣ ( b 2 ∣ ∣ b ∣ ∣ a 1 ∣ ∣ a ∣ ∣ − b 1 ∣ ∣ b ∣ ∣ a 2 ∣ ∣ a ∣ ∣ ) = ∣ ∣ a ∣ ∣ ∣ ∣ b ∣ ∣ s i n ( β − α ) = S ( a , b ) ( S ( a , b ) 表 示 以 a , b 为 边 的 平 行 四 边 形 的 面 积 ) \begin{vmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \\ \end{vmatrix} =a_1b_2-a_2b_1 =\frac{||a|| \ ||b ||}{||a|| \ ||b ||} (a_1b_2-a_2b_1) =||a|| \ ||b || (\frac{b_2}{||b||} \frac{a_1}{||a||} - \frac{b_1}{||b||} \frac{a_2}{||a||}) =||a|| \ ||b || sin(\beta - \alpha)=S(a,b) \quad (S(a,b)表示以a,b为边的平行四边形的面积) ∣∣∣∣a1b1a2b2∣∣∣∣=a1b2−a2b1=∣∣a∣∣ ∣∣b∣∣∣∣a∣∣ ∣∣b∣∣(a1b2−a2b1)=∣∣a∣∣ ∣∣b∣∣(∣∣b∣∣b2∣∣a∣∣a1−∣∣b∣∣b1∣∣a∣∣a2)=∣∣a∣∣ ∣∣b∣∣sin(β−α)=S(a,b)(S(a,b)表示以a,b为边的平行四边形的面积)
可以看到行列式符号与 s i n ( β − α ) sin(\beta - \alpha) sin(β−α)相同,即 S ( a , b ) S(a,b) S(a,b)不一定为正数,因此将 S ( a , b ) S(a,b) S(a,b)称为 有 向 面 积 {\color{BurntOrange} 有向面积} 有向面积。
记 D = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ D=\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} D=∣∣∣∣∣∣∣∣∣a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann∣∣∣∣∣∣∣∣∣,把此行列式沿主对角线翻转(行列对换),称为D的转置,记为 D T D^T DT:
D T = ∣ a 11 a 21 ⋯ a n 1 a 12 a 22 ⋯ a n 2 ⋮ ⋮ ⋱ ⋮ a 1 n a 2 n ⋯ a n n ∣ D^T=\begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix} DT=∣∣∣∣∣∣∣∣∣a11a12⋮a1na21a22⋮a2n⋯⋯⋱⋯an1an2⋮ann∣∣∣∣∣∣∣∣∣
互换两行或两列,符号改变
可以从面积出发:
∣ a 1 a 2 b 1 b 2 ∣ = S ( a , b ) = ∣ ∣ a ∣ ∣ ∣ ∣ b ∣ ∣ s i n ( β − α ) = − ∣ ∣ b ∣ ∣ ∣ ∣ a ∣ ∣ s i n ( α − β ) = − S ( b , a ) = − ∣ b 1 b 2 a 1 a 2 ∣ \begin{vmatrix} a_1 & a_2\\b_1 & b_2 \end{vmatrix} =S(a,b)=||a|| \ ||b||sin(\beta-\alpha) =-||b||\ ||a||sin(\alpha-\beta)=-S(b,a) =-\begin{vmatrix} b_1 & b_2\\a_1 & a_2 \end{vmatrix} ∣∣∣∣a1b1a2b2∣∣∣∣=S(a,b)=∣∣a∣∣ ∣∣b∣∣sin(β−α)=−∣∣b∣∣ ∣∣a∣∣sin(α−β)=−S(b,a)=−∣∣∣∣b1a1b2a2∣∣∣∣
也可以从定义出发:
∣ a 1 a 2 b 1 b 2 ∣ = a 1 b 2 − a 2 b 1 \begin{vmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \\ \end{vmatrix} =a_1b_2-a_2b_1 ∣∣∣∣a1b1a2b2∣∣∣∣=a1b2−a2b1
∣ b 1 b 2 a 1 a 2 ∣ = a 2 b 1 − a 1 b 2 = − ∣ a 1 a 2 b 1 b 2 ∣ \begin{vmatrix} b_{1} & b_{2} \\ a_{1} & a_{2} \\ \end{vmatrix} =a_2b_1-a_1b_2 =-\begin{vmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \\ \end{vmatrix} ∣∣∣∣b1a1b2a2∣∣∣∣=a2b1−a1b2=−∣∣∣∣a1b1a2b2∣∣∣∣
k ∣ a 1 a 2 b 1 b 2 ∣ = ∣ k a 1 k a 2 b 1 b 2 ∣ = ∣ a 1 a 2 k b 1 k b 2 ∣ k\begin{vmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \\ \end{vmatrix} =\begin{vmatrix} ka_{1} & ka_{2} \\ b_{1} & b_{2} \\ \end{vmatrix} =\begin{vmatrix} a_{1} & a_{2} \\ kb_{1} & kb_{2} \\ \end{vmatrix} k∣∣∣∣a1b1a2b2∣∣∣∣=∣∣∣∣ka1b1ka2b2∣∣∣∣=∣∣∣∣a1kb1a2kb2∣∣∣∣,k为任意实数。
如下图(来源)所示,可见有向面积扩大至k倍:
因有 k ∣ a 1 a 2 b 1 b 2 ∣ = k S ( a , b ) = S ( k a , b ) = ∣ k a 1 k a 2 b 1 b 2 ∣ k\begin{vmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \\ \end{vmatrix} =kS(a,b)=S(ka,b) =\begin{vmatrix} ka_{1} & ka_{2} \\ b_{1} & b_{2} \\ \end{vmatrix} k∣∣∣∣a1b1a2b2∣∣∣∣=kS(a,b)=S(ka,b)=∣∣∣∣ka1b1ka2b2∣∣∣∣
∣ a 1 a 2 b 1 + c 1 b 2 + c 2 ∣ = ∣ a 1 a 2 b 1 b 2 ∣ + ∣ a 1 a 2 c 1 c 2 ∣ \begin{vmatrix} a_{1} & a_{2} \\ b_{1}+c_{1} & b_{2} +c_{2}\\ \end{vmatrix} =\begin{vmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \\ \end{vmatrix} +\begin{vmatrix} a_{1} & a_{2} \\ c_{1} & c_{2} \\ \end{vmatrix} ∣∣∣∣a1b1+c1a2b2+c2∣∣∣∣=∣∣∣∣a1b1a2b2∣∣∣∣+∣∣∣∣a1c1a2c2∣∣∣∣
如下图(来源)所示:
可见 S ( a , b + c ) = S ( a , b ) + S ( a , c ) S(a,b+c)=S(a,b)+S(a,c) S(a,b+c)=S(a,b)+S(a,c)
∣ a 1 a 2 k a 1 k a 2 ∣ = 0 \begin{vmatrix} a_{1} & a_{2} \\ ka_{1} & ka_{2} \\ \end{vmatrix}=0 ∣∣∣∣a1ka1a2ka2∣∣∣∣=0
同向向量共线,有向面积为0:
∣ a 1 a 2 b 1 b 2 ∣ = ∣ a 1 a 2 b 1 + λ a 1 b 2 + λ a 2 ∣ \begin{vmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \\ \end{vmatrix} =\begin{vmatrix} a_{1} & a_{2} \\ b_{1}+\lambda a_1 & b_{2}+\lambda a_2\\ \end{vmatrix} ∣∣∣∣a1b1a2b2∣∣∣∣=∣∣∣∣a1b1+λa1a2b2+λa2∣∣∣∣
即将某行的常数倍加到另一行上,行列式值不变。
从下图可见,实际为将四边形沿a方向拉伸,底边和高都不变,因此面积不变:
转置行列式与原行列式相等
由定义可证:
∣ a 1 a 2 b 1 b 2 ∣ = a 1 b 2 + a 2 b 1 ∣ a 1 b 1 a 2 b 2 ∣ = a 1 b 2 + a 2 b 1 \begin{vmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \\ \end{vmatrix} =a_1b_2+a_2b_1\\ \begin{vmatrix} a_{1} & b_1 \\ a_2 & b_{2} \end{vmatrix}=a_1b_2+a_2b_1 ∣∣∣∣a1b1a2b2∣∣∣∣=a1b2+a2b1∣∣∣∣a1a2b1b2∣∣∣∣=a1b2+a2b1
即 D T = D D^T=D DT=D
(也可以通过有向面积相等得到)
三阶行列式的值是由其行向量或列向量按顺序所张成的平行六面体的有向体积,以原行或列的排列为标准次序,任意两个向量的顺序改变一次符号变化一次。
d e t ( a , b , c + d ) = d e t ( a , b , c ) + d e t ( a , b , d ) det(a,b,c+d)=det(a,b,c)+det(a,b,d) det(a,b,c+d)=det(a,b,c)+det(a,b,d)
d e t ( a , a , c ) = 0 det(a,a,c)=0 det(a,a,c)=0
只要含同向向量,det一定为0:
k d e t ( a , b , c ) = d e t ( k a , b , c ) = d e t ( a , k b , c ) = d e t ( a , b , k c ) kdet(a,b,c)=det(ka,b,c)=det(a,kb,c)=det(a,b,kc) kdet(a,b,c)=det(ka,b,c)=det(a,kb,c)=det(a,b,kc)
任意一个向量长度变化,体积也跟着发生同比例的变化:
d e t ( a , b , c ) = d e t ( a , b , k a + c ) det(a,b,c)=det(a,b,ka+c) det(a,b,c)=det(a,b,ka+c)
将某行的k倍加到另一行行列式值不变,与二阶行列式性质5类似,为沿某个方向拉伸: