- Whisper 模型在实时语音转录中有哪些具体的应用场景?
借雨醉东风
热点追踪whisper人工智能
关注我,持续分享逻辑思维&管理思维&面试题;可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;推荐专栏《10天学会使用asp.net编程AI大模型》,目前已完成所有内容。一顿烧烤不到的费用,让人能紧跟时代的浪潮。从普通网站,到公众号、小程序,再到AI大模型网站。干货满满。学成后可接项目赚外快,绝对划算。不仅学会如何编程,还将学会如何将AI技术应用到实际问题中,为您的职业生涯增添一笔宝贵的财富
- 本地搭建 Whisper 语音识别模型实现实时语音识别研究
一只老虎
人工智能编程开发算法研究whisper语音识别人工智能
目录摘要关键词1.引言2.Whisper模型简介3.环境准备4.系统架构与实现4.1模型加载4.2实时音频输入处理4.3实时转录处理4.4程序实现的框架4.5代码实现5.实验与结果6.讨论7.结论参考文献摘要语音识别技术近年来发展迅速,广泛应用于智能家居、智能客服、语音助手等领域。Whisper是由OpenAI开发的一种开源语音识别模型,具有高效的转录能力。本研究旨在探讨如何在本地环境中搭建Whi
- 如何从0到1本地搭建whisper语音识别模型
MaxCode-1
搭建本地gptwhisper
文章目录环境准备1.系统要求2.安装依赖项1:安装Python和虚拟环境2:安装Whisper3:下载Whisper模型4:进行语音识别5:提高效率和精度6:开发和集成Whisper是OpenAI发布的一个强大的语音识别模型,它可以将语音转换为文本,支持多语言输入,并且可以处理各种音频类型。以下是一个从0到1的本地搭建Whisper模型进行语音识别教程环境准备1.系统要求操作系统:Linux、Ma
- 快速搭建本地 Whisper 语音识别大模型
码上飞扬
whisper
在语音识别领域,OpenAI的Whisper模型以其高效且准确的特性迅速受到瞩目。许多人可能觉得在本地环境中运行这样一个大模型过于复杂,但其实,经过正确的指导,你完全可以在自己的计算机上搭建一个高性能的语音识别系统。前置准备在开始之前,你需要确保计算机符合以下条件:Python3.7+环境GPU支持(CUDA驱动):尽管CPU也能运行,但GPU会更快。足够的存储空间:模型可能需要几个GB。步骤一:
- whisper 实现语音转文字
MonkeyKing.sun
whisper
准备需要转码的音频https://support.huaweicloud.com/sdkreference-sis/sis_05_0039.html编码转吗的代码importwhisperif__name__=="__main__":file_path="16k16bit.wav"model=whisper.load_model("small")result=model.transcribe(fi
- 本地搭建和运行Whisper语音识别模型小记
LQS2020
whisper
搭建本地的Whisper语音识别模型可以是一个非常有用的项目,尤其是在需要离线处理语音数据的情况下。Whisper是OpenAI开发的一个开源语音识别模型,支持多语言和高效的转录能力。以下是详细的步骤来本地搭建和运行Whisper语音识别模型:1.准备环境安装Python确保你的系统上安装了Python3.8及以上版本。可以从Python官方网站下载并安装。创建虚拟环境(可选)为了避免依赖冲突,建
- 【AIGC】Whisper语音识别模型概述,应用场景和具体实例及如何本地搭建Whisper语音识别模型?
@我们的天空
AIGCwhisper语音识别AIGCpython人工智能机器学习深度学习
欢迎大家来到我们的天空如果文章内容对您有所触动,别忘了点赞、关注,收藏!作者简介:我们的天空《头衔》:大厂高级软件测试工程师,阿里云开发者社区专家博主,CSDN人工智能领域新星创作者。《博客》:人工智能,深度学习,机器学习,python,自然语言处理,AIGC等分享。所属的专栏:TensorFlow项目开发实战,人工智能技术主页:我们的天空一、Whisper语音识别模型概述Whisper是由Ope
- 如何本地搭建 Whisper 语音识别模型?一文解决
玩AI的小胡子
whisperAIGC人工智能语音识别
Whisper是OpenAI开发的强大语音识别模型,适用于多种语言的语音转文字任务。要在本地搭建Whisper模型,需要完成以下几个步骤,确保模型在你的设备上顺利运行。1.准备环境首先,确保你的系统上安装了Python(版本3.8到3.11之间)。此外,还需要安装PyTorch,这是Whisper依赖的深度学习框架。2.安装Whisper在命令行中运行以下命令来安装Whisper和其依赖项:pip
- 【机器学习】Whisper:开源语音转文本(speech-to-text)大模型实战
LDG_AGI
AI智能体研发之路-模型篇机器学习whisper人工智能语音识别实时音视频pythontransformer
目录一、引言二、Whisper模型原理2.1模型架构2.2语音处理2.3文本处理三、Whisper模型实战3.1环境安装3.2模型下载3.3模型推理3.4完整代码3.5模型部署四、总结一、引言上一篇对ChatTTS文本转语音模型原理和实战进行了讲解,第6次拿到了热榜第一。今天,分享其对称功能(语音转文本)模型:Whisper。Whisper由OpenAI研发并开源,参数量最小39M,最大1550M
- Mozilla为本地音频到文本翻译开发Whisperfile引擎
DisonTangor
人工智能人工智能语音识别
MozillaOcho小组正进行Mozilla的"创新和实验"。Llamafile用于将大型语言模型以单个文件的形式发布,以便在不同的硬件/软件间轻松执行。Whisperfile是一项将音频轻松转化为文本的新引擎。正如其名称所暗示的,Whisperfile是围绕OpenAI的Whisper模型构建的,用于本地音频/语言翻译。Whisperfile基于Whisper.cpp源,在转录过程中还能将非英
- 利用命令行从youtube下载影片,并用huggingface的大语言模型翻译成中文
SteveMiller
语言模型人工智能自然语言处理
今天,从网络流媒体上下载字幕,并把它翻译成各种语言是一个非常常规的操作。我创建了一个工作流程。可以根着这个工作流程,从网上先下载影片,然后转出字幕,最后再做翻译。https://github.com/victorspaceRMW/download-Youtube-with-yt-dlp-and-translate-with-HuggingFace-s-whisper-model/tree/main
- 真快!几分钟就把视频语音识别为文本了,不到10行代码
诗者才子酒中仙
音视频语音识别人工智能
虽然已经很简单了,但是对于程序员来说还是不够简洁,毕竟程序员都很“懒”,Whisper虽说安装和调用已经很简单了,但还是需要独立安装PyTorch、ffmpeg甚至Rust。将音视频文件中的音频转为文字内容,这个需求放到两年前还不大好实现,但是放到今天,几分钟就解决了。听说有的公司为了抓取训练数据,已经把抖音、快手这些短视频平台上的视频扒了个遍,然后将其中的音频提取成文本,用作大数据模型的训练语料
- 全球知名语音大模型介绍
科学禅道
大模型专栏语音大模型深度学习人工智能语音识别
全球知名的语音大模型包括但不限于以下几种:OpenAIWhisper:OpenAI于2022年发布的Whisper是一个大规模的多语言端到端语音转文本模型,它能够在多个语种上实现高质量的自动语音识别(ASR),并且具备一定的翻译能力。目前最新版本是OpenAIWhisperV3,发布时间为2023年11月7日。DeepMindWaveNet:DeepMind开发的WaveNet是一种开创性的神经网
- Ellen 的Scalers Talk第四轮《新概念》朗读持续力训练 Day12520190225
徐少爷
1.练习材料:新概念第三册lesson292.任务配置:L0+L3+L4001任务L0朗读已发QQ群002L3复述没有3.知识配置001laughtotears笑出眼泪smilefromeartoear笑合不拢嘴002whistle吹口哨whisper低声细语murmur咕咕噜噜mumble喃喃003fanny(有贬义)可笑amusing使人笑的ridiculous滑稽的comic可笑的,喜剧的h
- 在使用cuda12 报错Library cublas64_11.dll is not found
atlasroben
python深度学习人工智能
因为nvidia的升级基本上都是是CUDA12了,在我发表文章的时候如果去官网下载CUDA包默认安装CUDA版本就是12了.今天在调用fast-whisper的时候使用GPU报错Librarycublas64_11.dllisnotfoundmodel=faster_whisper.WhisperModel(model_size,device="cuda",compute_type="float1
- WhisperFusion:具有超低延迟无缝对话功能的AI系统
语音之家
智能语音人工智能语音识别语言模型
WhisperFusion基于WhisperLive和WhisperSpeech的功能而构建,在实时语音到文本管道之上集成了大型语言模型Mistral(LLM)。LLM和Whisper都经过优化,可作为TensorRT引擎高效运行,从而最大限度地提高性能和实时处理能力。WhiperSpeech是通过torch.compile进行优化的。特征实时语音转文本:利用OpenAIWhisperLive将口
- 使用openai-whisper实现语音转文字
MasonYyp
whisper
使用openai-whisper实现语音转文字1安装依赖1.1Windows下安装ffmpegFFmpeg是一套可以用来记录、转换数字音频、视频,并能将其转化为流的开源计算机程序。采用LGPL或GPL许可证。它提供了录制、转换以及流化音视频的完整解决方案。#ffmpeg官网https://ffmpeg.org/#ffmpeg下载地址https://ffmpeg.org/download.html#
- 中文语音标注工具FunASR(语音识别)
我要用代码向我喜欢的女孩表白
语音识别人工智能
全称AFundamentalEnd-to-EndSpeechRecognitionToolkit(一个语音识别工具)可能大家用过whisper(openAi),它【标注英语的确很完美】,【但中文会出现标注错误】或搞了个没说的词替换上去,所以要人工核对,麻烦。FunASR作用:能【准确】识别语音,并转成【文字、标出声调】他的原理,就不讲了,俺是搞大数据的,python这东西就勉强能写个爬虫和接口,机
- 三、OpenAI所有模型介绍
挑大梁
#大模型入门gpt-3DALL·E2
1.综述OpenAIAPI开发了具有各种能力的模型。可以根据不同的需求选择不同的模型并进行精调。模型描述GPT-4、GPT-4Turbo一组从GPT-3.5升级后的模型,能够生成自然语言和代码GPT-3.5Turbo一组从GPT-3.5升级后的模型,能够生成自然语言和代码DALL.E能够根据自然语言提示词生成和编辑图片的模型TTS一组可以将文本转换成自然语音语言的模型Whisper可以将语音转换成
- 小孩的诗
darkness_
路边的梅花开了一季又一季当初我到来时是否也是这样的冬天鹅毛的大雪落了一遍又一遍掩盖了曾经的那个翩翩少年你牵着我走过了夏和秋的更变蝉鸣叫嚷着操劳和思念落叶抒写着催人的诗篇用岁月勾画纸飞机承载我整个童年又回到了最初的冬天时间不断摧残着少年的容颜你用双手抚开泥泞的危险拼命将我推向你所向往的那个春天whisper原创
- ChatGPT重磅升级!集简云支持GPT4 Turbo Vision, GPT4 Turbo, Dall.E 3,Whisper等最新模型
Draven21
ChatGPTchatgptwhisper
ChatGPT重磅升级!集简云支持GPT4TurboVision,GPT4Turbo,Dall.E3,Whisper等最新模型在人工智能技术迅猛发展的今天,ChatGPT迎来了史无前例的重磅升级。集简云平台宣布正式支持GPT4TurboVision、GPT4Turbo、Dall.E3和Whisper等业界领先的最新模型,这一举措无疑将为用户提供前所未有的智能体验,并进一步扩大人工智能在各个领域中的
- webassembly002 whisper.wasm wasm_eval 与js代码交互 EMSCRIPTEN_BINDINGS,Module
FakeOccupational
硬件和移动端whisperwasmjavascript
#buildusingEmscriptengitclonehttps://github.com/ggerganov/whisper.cppcdwhisper.cppmkdirbuild-em&&cdbuild-ememcmakecmake..make-j#copytheproducedpagetoyourHTTPpathcpbin/whisper.wasm/*/path/to/html/cpbin
- webassembly002 whisper.wasm wasm_eval 与js代码交互 js部分
FakeOccupational
硬件和移动端javascriptwhisperwasm
html的js##libmain#set(TARGETlibmain)add_executable(${TARGET}emscripten.cpp)#添加可执行目标libmain,并包含emscripten.cpp文件include(DefaultTargetOptions)#引入默认的目标选项,https://blog.csdn.net/ResumeProject/article/details
- ChatGPT和Whisper的API基本看点
唐伯虎点·蚊香
OpenAIchatgptwhisper
ChatGPTOfficialAPILearning今天OpenAI开放了ChatGPT背后的GPT-3.5的模型API,模型代号为Turbo,其定价甚至比此前的Davinci都要便宜,1000tokens仅为0.2美分。本次除了GPT-3.5模型API开放外,还在原有的几大任务类型(Text、Code、Image、Embedding、Moderation)基础上增加了Chat、SpeechtoT
- 在人工智能时代,Django + 简单的 HTML + Whisper + mixtral-8x7b-instruct + SQLite 实现了一个 TODO应用
拒绝者zzzz
sqlite人工智能djangojavascriptwhisperhtml
这里写自定义目录标题构建AI-poweredTODO应用新的思考构建AI-poweredTODO应用人工智能TODO应用程序演示https://ivan-tolkunov–surukoto-run.modal.run/(警告:该应用程序可能需要长达30秒才能启动)。所有数据在不活动5分钟后重置。试着告诉它:“添加彩虹的每一种颜色”,然后“标记所有提到绿色和紫色之间的待办事项”和“清理完成的待办事项
- 深度学习系列56:使用whisper进行语音转文字
IE06
深度学习系列whisper
1.openai-whisper这应该是最快的使用方式了。安装pipinstall-Uopenai-whisper,接着安装ffmpeg,随后就可以使用了。模型清单如下:第一种方式,使用命令行:whisperjapanese.wav--languageJapanese--modelmedium另一种方式,使用python调用:importwhispermodel=whisper.load_mode
- python实现音频转文本
sometime`something
python音视频开发语言
网上下载了一堆视频,但是没时间看,想着把视频声音转换成文字,读文字来学习就快多了,找了一圈没有免费的,还是自己鼓捣一个吧工具faster-whisper音频转文本ffmpeg将视频提取音频保存为wav格式实现fromfaster_whisperimportWhisperModelimportosimporttoolimportthreadingthreads=[]i=0defparse_autdi
- 20240202在WIN10下使用fast whisper缺少cudnn_ops_infer64_8.dll
南棱笑笑生
杂质whisper深度学习人工智能
20240202在WIN10下使用fastwhisper缺少cudnn_ops_infer64_8.dll2024/2/210:48https://blog.csdn.net/feinifi/article/details/132548556Couldnotlocatecudnn_ops_infer64_8.dll.Pleasemakesureitisinyourlibrarypath!解决办法安
- 20240202在WIN10下部署faster-whisper
南棱笑笑生
杂质whisper
20240202在WIN10下部署faster-whisper2024/2/212:15前提条件,可以通过技术手段上外网!^_首先你要有一张NVIDIA的显卡,比如我用的PDD拼多多的二手GTX1080显卡。【并且极其可能是矿卡!】800¥2、请正确安装好NVIDIA最新的545版本的驱动程序和CUDA、cuDNN。2、安装Torch3、配置whisperhttps://developer.ali
- Faster-Whisper 实时识别电脑语音转文本
SlowFeather
AIPythonpythonwhisper
Faster-Whisper实时识别电脑语音转文本前言项目搭建环境安装Faster-Whisper下载模型编写测试代码运行测试代码实时转写脚本参考前言以前做的智能对话软件接的BaiduAPI,想换成本地的,就搭一套Faster-Whisper吧。下面是B站视频实时转写的截图项目搭建环境所需要的CUDANN已经装好了,如果装的是12.2应该是包含cuBLAS了没装的,可以从下面链接下载装一下,文末的
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不