Day 48

Day 48

198.打家劫舍

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]

  1. 确定递推公式

决定dp[i]的因素就是第i房间偷还是不偷。

如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。

如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点

然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

  1. dp数组如何初始化

从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]

从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);

class Solution:
    def rob(self, nums: List[int]) -> int:
        if len(nums) == 0:
            return 0

        if len(nums) == 1:
            return nums[0]

        dp= [0] * len(nums)
        dp[0] = nums[0]
        dp[1] = max(nums[0],nums[1])

        for i in range(2, len(nums)):
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])

        return dp[-1]
class Solution {
	public int rob(int[] nums) {
		if (nums == null || nums.length == 0) return 0;
		if (nums.length == 1) return nums[0];

		int[] dp = new int[nums.length];
		dp[0] = nums[0];
		dp[1] = Math.max(dp[0], nums[1]);
		for (int i = 2; i < nums.length; i++) {
			dp[i] = Math.max(dp[i - 1], dp[i - 2] + nums[i]);
		}

		return dp[nums.length - 1];
	}
}

213.打家劫舍II

“考虑”,例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素! 对于情况三,取nums[1] 和 nums[3]就是最大的。

class Solution:
    def rob(self, nums: List[int]) -> int:
        if len(nums) == 0:
            return 0

        if len(nums) == 1:
            return nums[0]

        result1 = self.robrange(nums, 0, len(nums) - 2)
        result2 = self.robrange(nums, 1, len(nums) - 1)

        return max(result1, result2)

    def robrange(self, nums, start, end):
        if end == start:
            return nums[start]

        dp = [0] * len(nums)

        prev_max = nums[start]
        curr_max = max(nums[start], nums[start + 1])
        
        for i in range(start + 2, end + 1):
            temp = curr_max
            curr_max = max(prev_max + nums[i], curr_max)
            prev_max = temp
        
        return curr_max

337.打家劫舍3

本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算

  1. 确定递归函数的参数和返回值

这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。

其实这里的返回数组就是dp数组。

所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。

所以本题dp数组就是一个长度为2的数组!

那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?

别忘了在递归的过程中,系统栈会保存每一层递归的参数

如果还不理解的话,就接着往下看,看到代码就理解了哈。

在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回

首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。

通过递归左节点,得到左节点偷与不偷的金钱。

通过递归右节点,得到右节点偷与不偷的金钱。

如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

class Solution:
    def rob(self, root: Optional[TreeNode]) -> int:
        dp = self.traversal(root)
        return max(dp)

    def traversal(self, node):
        if not node:
            return (0,0)

        left = self.traversal(node.left)
        right = self.traversal(node.right)

        val_0 = max(left[0], left[1]) + max(right[0], right[1])

        val_1 = node.val + left[0] + right[0]

        return (val_0, val_1)

你可能感兴趣的:(leetcode,算法,动态规划)