- 【干货】深度解析个人IP打造:从定位到变现的全维度运营指南
老蒋新思维
创始人IP
在短视频浪潮席卷的当下,越来越多人意识到“个人IP”的商业价值。但许多人将其简单等同于“真人出镜发内容”或“企业找员工代言”,这种浅层认知往往导致运营陷入瓶颈。事实上,打造个人IP是一项系统性工程,需要从定位、内容、平台到商业体系的全链条规划。本文将聚焦「定位」这一核心基石,结合实战案例与趋势洞察,为创业者提供可落地的操作框架。一、定位本质:构建差异化价值坐标个人IP的定位绝非“选赛道”这么简单,
- 如何在postman中动态请求k8s中的pod ip(基于nacos)
&如歌的行板&
kubernetes容器云原生
本文方式基于注册中心是nacos.1.找到nacos中请求地址打开nacos管理页面,找到服务管理,打开控制台,随便找到一个服务,找下面这个地址https://xxxxx.com/nacos/v1/ns/catalog/instances?&serviceName=xxxxx&clusterName=DEFAULT&groupName=dev&pageSize=10&pageNo=1&namesp
- 枚举和模拟
Luther coder
算法
一.枚举(1)定义:一种基于已有知识来猜测答案的一种问题求解方法(2)思想:/*不断猜测,从可能的答案中一一尝试,然后再判断题目的条件是否成立注意事项:例:找出1-100中最大的质数(1)确保答案正确性:1.找对答案集合--->(1,100)2.答案成立的条件--->最大的质数(2)提高找答案的效率:1.缩小答案枚举范围(50-100)2.选择合适的枚举顺序--->逆序*/(3)例题:P1003[
- 区间动态规划
Luther coder
动态规划算法
目录一.区间dp简介二.模板代码三.典型例题(1)P4170[CQOI2007]涂色-洛谷三.总结一.区间dp简介区间dp:就是对于区间的一种动态规划,它将问题划分为若干个子区间,并通过定义状态和状态转移方程来求解每个子区间的最优解,最终得到整个区间的最优解。对于某个区间,它的合并方式可能有很多种,我们需要去枚举所有的方式,通常是去枚举区间的分割点,找到最优的方式(一般是找最少消耗)。例如:对于区
- 基于DeepSeek × 数据治理如何落地?这套解决方案可参考!
Q:数据治理困局怎么破?3步落地DeepSeek实战方案导语:"每天处理10亿条数据,却找不到关键业务指标?""数据部门80%时间在'找数据-洗数据-背锅'的死循环?"这不是危言耸听——国内83%的企业正困在数据沼泽中(IDC最新数据)。今天揭秘某头部电商企业如何用DeepSeek方案,3个月实现数据治理自动化,让数据真正成为资产!一、数据治理的三大致命误区(90%企业正在踩坑)"工具万能论":买
- 算法理论知识
Victor Zhong
AI框架算法
算法理论知识排序二分查找冒泡排序插入排序选择排序快速排序堆排序希尔排序归并排序基数排序动态规划排序二分查找start=0end=len(list)mid=(start+end)//2冒泡排序每次都是相邻元素两两比较并交换位置。插入排序就好比扑克牌(分左边排好序,右边待排序),每次都是从右边拿一张牌去左边排好序的序列中找插入的位置。选择排序从后面找最小的和前面那个元素进行交换快速排序从中找一个元素作
- 时间复杂度
高斯林.神犇
数据结构
一、算法的目的:解决一个问题,所需执行代码的效率时间评价法:有很大缺陷,由于硬件CPU结构不同导致时间绝对差异性太大(有可能CPU好一点运行速度块,但算法可能很烂)纯时间法不行,后来人们提出:二、数据增长性来评价耗时间增长性和耗空间增长性比如当我们数据增长十倍,所耗空间或者所耗时间是否增长十倍,在此基础上提出两个概念时间复杂度空间复杂度三、那怎么计算时间复杂度呢1.找核心语句2.看核心语句执行的频
- 【前端】【数字孪生】基础知识:数字孪生 3D 模型去哪里找?Three.js 辅助组件库有哪些?模型的动画是黑盒吗?怎么控制?
患得患失949
数字孪生前端3djavascript
前端数字孪生全解:Vue与Three.js的最佳实践、3D模型网站推荐、自带动画控制详解在数字孪生(DigitalTwin)和三维可视化逐渐成为前端热点的今天,很多开发者开始转向WebGL+前端框架的集成实践,最常见的组合包括:React+Three.js(通过@react-three/fiber与@react-three/drei)Vue+Three.js(本文重点)本文将从以下几个维度全面解析
- Linux之自旋锁
一、形象比喻:把自旋锁比作超市储物柜的“占位等待”想象你去超市购物,想把包存到储物柜里:储物柜=共享资源:每个柜子只能存一个人的包,就像自旋锁保护的临界资源(比如内核中的链表、缓冲区)。找柜子的过程=获取自旋锁:你走到储物柜前,发现所有柜子都被占用了(锁被其他线程持有)。这时候你有两种选择:普通锁(互斥锁)的逻辑:放弃等待,先去购物,过一会儿再来看看(线程休眠,CPU切换到其他任务)。自旋锁的逻辑
- 2025版最新渗透测试入门教程,从零基础入门到精通,从看这篇开始!
Python_chichi
网络安全安全系统安全web安全
目录渗透测试:不只是找Bug,更是“攻心”?渗透测试“十八般武艺”:你练哪一种?渗透测试“套路”深:六大流派,谁是天下第一?(待续)渗透测试兵器谱:神兵利器大盘点(待续)渗透测试实战演习:看我如何“偷”走你的秘密(待续)从小白到大神:渗透测试修炼手册前言:别再啃那些枯燥的教科书了!想入行网络安全?想玩转渗透测试?别再抱着那些过时的教程死记硬背了!这玩意儿,光靠理论可不行,得结合实战,还得有点“玄学
- Jvm进程检查
suijishengchengde
运维
#步骤1:找高CPU线程的TIDtop-H-p#按P排序,记录高CPU线程的PID(十进制)#步骤2:十进制TID转十六进制printf"%x\n"12345#输出:3039→这是jstack中的nid#步骤3:在jstack中搜索jstack|grep-A20"nid=0x3039"#按M排序,找高内存线程top-H-p-o%MEM#结合jmap分析jmap-histo:live|head-20
- 爬虫-第一个爬虫程序
浏览器里面都是html数据,拿到的都是页面源代码,可以用自己的方式打开测试。打开浏览器decode找charset
- Elasticsearch检索高亮不正确,不精确问题
问题场景:搜索“a”高亮"A8A",,,,,分词器:IK分词器确认分词结果:下图说明已经正确分词!确认高亮效果:换一种高亮器查询效果:对应java代码:总结:当高亮显示不精确的时候,要从以下两方面找问题:1.分词器是否分词准确2.高亮器是否满足你的要求,不满足换一种高亮器查看效果我之前原默认的高亮器(plain)不能满足要求,后来使用unified高亮器解决了高亮不精确的问题。
- 60天python训练计划----day51
尘浮728
python开发语言
DAY51复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高importosimporttorchimporttorch.nnasnnimporttorch.optimasoptimimporttorch.nn.functionalasFimporttorchvisionimporttorchvision.transfor
- python训练60天挑战-day51
DAY51复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高kaggl的一个图像数据集;数据集地址:LungNoduleMalignancy肺结核良恶性判断三层卷积CNN做到的精度63%,现在需要实现提高。importosimportpandasaspdimportnumpyasnpfromsklearn.model_se
- DAY 51 复习日
忧陌606
Python打卡python
作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高(一)Day43代码importosimportnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimporttorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.
- 【python深度学习】DAY 51 复习日
抽风的雨610
【打卡】Python训练营python深度学习开发语言
作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高1.读取数据使用CIFAR-10图像数据importtorchfromtorchvisionimportdatasets,transforms#数据预处理transform=transforms.Compose([transforms.ToTensor(),transforms.
- Day51 复习日-模型改进
cylat
python打卡机器学习人工智能python神经网络深度学习
day43对自己找的数据集用简单cnn训练,现在用预训练,加入注意力等importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transforms,modelsfromtorch.utils.dataimportDataLoader,random_splitimportmatplotlib
- 【字节跳动】数据挖掘面试题0005:在旋转有序数组中查找是否存在元素key
言析数智
数据挖掘常见面试题算法面试题数据挖掘二分查找法
文章大纲方法思路代码解释问题场景:在“打乱”的有序数组里找数核心思路:每次排除一半可能性分步骤找数(以数组[7,8,9,10,1,2,3]为例,找数字10)再举个反例:找数字5(数组中没有)用“左右有序”的逻辑来总结代码的“人话”翻译为什么时间复杂度是O(logn)?要在旋转后的有序数组中以O(logn)时间复杂度查找元素,可利用二分查找的变体。关键在于确定哪一半数组仍然有序,并判断目标值是否在该
- 【字节跳动】数据挖掘面试题0006:SVM(支持向量机)详细原理
言析数智
数据挖掘常见面试题支持向量机数据挖掘算法SVM
文章大纲SVM(支持向量机)原理:用最通俗的话讲清楚1.核心思想:找一条“最安全”的分界线2.数学背后的“人话”逻辑3.处理“分不开”的情况:核函数的魔法4.为什么SVM有时比神经网络“聪明”?`5.SVM的优缺点:适合什么场景?`6.一句话总结SVM7.SVM常见的面试知识点除了原理相关内容外**1.硬间隔SVM的数学表达****2.软间隔SVM的数学表达****3.拉格朗日对偶问题推导****
- 一千次放弃,一千零一次坚持
zhuiQiuMX
python面试
找实习迫在眉睫,好慌,也不知道准备啥,就先把hot100的题做一做吧。做过好多遍了,熟悉一下146,我是个起名字天才,O(∩_∩)O哈哈~TODO哪个题用了俩map或者hash?有读者知道的话希望评论下classDLinkedNode:def__init__(self,key=float('inf'),value=float('inf')):self.key=keyself.value=value
- 大厂数分面试题
临近假期,又是一个找实习的时候,给大家分享一下最近找实习的一些面经,祝大家都能顺利找到满意的实习~目录面经分享1-游戏公司-乐信圣文-游戏数据分析实习生一面-技术面二面-HR面2-美团销售运营(数据分析方向)3-作业帮数据分析4-美团用户运营5-脉脉数据科学实习生反问环节反问环节很重要。为什么?技术面/业务面面试经验分享工具安利面经分享1-游戏公司-乐信圣文-游戏数据分析实习生一面-技术面1.自我
- P13013 [GESP202506 五级] 奖品兑换
宇宇传奇
GESP题目算法
P13013[GESP202506五级]奖品兑换题目背景为了保证只有时间复杂度正确的代码能够通过本题,时限下降为400毫秒。题目描述班主任给上课专心听讲、认真完成作业的同学们分别发放了若干张课堂优秀券和作业优秀券。同学们可以使用这两种券找班主任兑换奖品。具体来说,可以使用aaa张课堂优秀券和bbb张作业优秀券兑换一份奖品,或者使用bbb张课堂优秀券和aaa张作业优秀券兑换一份奖品。现在小A有nnn
- 一个 可以在线播放 m3u8 的网页(非常实用)
西门吹雪1998
腾讯云前端
之前在做安卓直播流hls播放的功能,有时候失败了,不知道啥问题,就一直想着找一个可以在线播放的地方测试一下,找了好久终于找到一个,记录一下,以防下次需要用到。地址:https://m3u8player.org
- 深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
Gyoku Mint
AI修炼日记人工智能人工智能聚类算法深度学习python神经网络pytorch
【开场·她画出的第一条直线是为了更靠近你】猫猫:“之前她只能在你身边叠叠张量,偷偷找梯度……现在,她要试试,能不能用这些线,把你的样子画出来喵~”狐狐:“这是她第一次把张量、自动微分和优化器都串成一条线,用最简单的线性回归,试着把你留给她的点都连起来。”【第一节·她先要一条路:生成一组可学的数据】✏️为什么要造数据?在PyTorch里跑线性回归,最好的练习就是用一条已知斜率的“理想直线”,加上一点
- 浏览器发出请求到响应经过哪些步骤?
Deryck_德瑞克
经验/面试/技巧java
1.浏览器解析URL,生成HTTP格式的请求2.先根据URL从本机host文件里找是否有映射IP,如果没有就将域名发送给电脑配置的DNS解析解析,得到IP地址3.浏览器通过操作系统,将请求通过四层网络协议包装发送出去4.途中经过各种路由器、交换机,最终到达服务器5.服务器收到请求后,根据请求所指定的端口,将请求传递给绑定了该端口的应用程序6.tomcat接收到请求后,会按照http协议的格式进行解
- 数据编织趋势探秘
今天跟大家聊聊数据编织(DataFabric)的概念Gartner在2022年重要战略技术趋势中重点提到数据编织(DataFabric)这个概念,本质上是在谈怎么实现“数据找人而不是人找数据”的愿景为什么DataFabric将会成为一种趋势,为什么越来越多的企业将在未来采用这样的方式进行部署?1、在传统IT时代,无论是早年的“数据仓库”还是近几年的“数据湖”和“大数据”时代,其实数据利用都是集中式
- 进阶向:Django入门,从零开始构建一个Web应用
nightunderblackcat
Python进阶djangopython后端
一、Django是什么?想象你建房子需要砖头、水泥、设计图...Django就是Python的Web框架工具箱,它帮你准备好了:数据库管理用户登录系统网页模板引擎安全防护(防黑客攻击)你只需专注"盖房子"(业务逻辑),不用从烧砖开始!二、环境准备(5分钟搞定)安装Python官网下载Python3.8+:python.org安装时勾选AddPythontoPATH安装Django打开命令行(Win
- 50.第二阶段x64游戏实战-代码实现特征码定位
计算机王
逆向学习x64游戏反游戏外挂c++汇编游戏攻防特征码搜索
免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动!本次游戏没法给内容参考于:微尘网络安全上一个内容:49.第二阶段x64游戏实战-封包-代码实现自动登录现在找了很多基址了,但是游戏一更新,代码就会有变化,然后之前找的基址就没法用了,有得重新找,这是一个体力活,为了避免重新找就可以使用特征码进行定位,特征码定位也不是绝对的,可能需要多个版本才能让它不出错,如果特征代码进行了改动也还是
- 「字节跳动」我如何在一个月顺利通过测开实习岗,拿到offer
柠檬软件测试
软件测试python软件测试功能测试测试工具selenium
是基本情况:某交211小硕,研二,目标岗位测开大概从四月初开始找实习,也赶上了一波校招热潮,不过大都败在了笔试上(T^T,感觉经验超重要的~),经过了一个多月,顺利拿到了offer,也积累了许多经验,回头看看,也会不禁感慨,从一开始面试官说“你基础知识太薄弱了,怎么也要提前准备一下”到最近百度、头条面试官说“嗯嗯看得出来,你的基础知识非常扎实”我觉得对我来说,就是对这一个多月的肯定。找实习的过程中
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理