linux有意将对设备的功能选择和设置以及硬件数据的读写分成不同的函数来实现。让read/write函数专注于数据的读写,而硬件功能的设备和选择通过ioctl函数来选择
int ioctl(int fd,unsigned long request)
通过:进行io功能的控制
参数:fd设备文件对应的文件描述符
request:要实现的功能对应的功能码
...第三个参数可以加,也可以不加,使用第三个参数的时候要传递一个整形数值或者传递一个指针类型数据
返回值:成功返回0,失败返回错误码
/************驱动***************/
//操作方法
long mycdev_ioctl(struct file *file,unsigned int cmd,unsigned long arg)
功能:当应用程序中ioctl被调用,驱动中ioctl对应的操作方法会被回调
参数:
file:文件指针
cmd:用户空间ioctl第二个参数的数值会传递给cmd
arg;用户空间ioctl第三个参数会传递给arg
尽量保证实现不同功能的功能码不容易被重复,这里需要对功能码进行编码操作,将一个功能码的32位划分为不同的区域,不同的区域就代表不同的含义,通过这种规则构造一个功能码
构建LED灯量灭控制的功能码
#define LED_ON _IO('l',1)
#define LED_OFF _IO('l',0)
设备文件-》inode号-》struct
1.分配一个字符设备驱动对象
2.初始化字符设备驱动对象
3.将字符设备驱动对象注册进内核
4.将字符设备驱动对象从内核中注销
/*********注册过程*********/
1.分配字符设备驱动对象
法1:struct cdev cdev;
法2:struct cdev *cdev = cdev_alloc();
2.字符设备驱动对象部分初始化
void cdev_init(struct cdev *cdev,const struct file_opreations *fops)
功能:部分初始化字符设备驱动对象
参数:
cdev字符设备驱动对象结构体指针
fops:操作方法结构体指针
3.设备号的申请
静态申请:int regiser_chrdev_region(dev_t from,unsigned count,const char *name)
动态申请:int alloc_chrdev_region(dev_t *dev,unsigned baseminor,unsigned count,const char
*name)
驱动文件
#include
#include
#include
#include
#include
#include
#include
#include
#include "head.h"
struct cdev *cdev;
unsigned int major = 0;
unsigned int minor = 0;
dev_t devno;
gpio_t *vir_led1;
gpio_t *vir_led2;
gpio_t *vir_led3;
unsigned int *vir_rcc;
struct class *cls;
struct device *dev;
int mycdev_open(struct inode *inode, struct file *file)
{
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
long mycdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
int which;
int ret=copy_from_user(&which,(unsigned int *)arg,4);
if(ret)
{
printk("copy_from_user err\n");
return ret;
}
// 根据用户空间功能码的不同实现硬件不同的控制
switch (cmd)
{
case LED_ON: // 开灯
switch (which)
{
case 1: // LED1
vir_led1->ODR |= (0X1 << 10);
break;
case 2: // LED2
vir_led2->ODR |= (0X1 << 10);
break;
case 3: // LED3
vir_led3->ODR |= (0X1 << 8);
break;
}
break;
case LED_OFF: // 关灯
switch (which)
{
case 1:
vir_led1->ODR &= (~(0X1 << 10));
break;
case 2:
vir_led2->ODR &= (~(0X1 << 10));
break;
case 3:
vir_led3->ODR &= (~(0X1 << 8));
break;
}
break;
}
return 0;
}
int mycdev_close(struct inode *inode, struct file *file)
{
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
// 定义操作方法结构体变量并赋值
struct file_operations fops = {
.open = mycdev_open,
.unlocked_ioctl = mycdev_ioctl,
.release = mycdev_close,
};
int all_led_init(void)
{
// 寄存器地址的映射
vir_led1 = ioremap(PHY_LED1_ADDR, sizeof(gpio_t));
if (vir_led1 == NULL)
{
printk("ioremap filed:%d\n", __LINE__);
return -ENOMEM;
}
vir_led2 = ioremap(PHY_LED2_ADDR, sizeof(gpio_t));
if (vir_led2 == NULL)
{
printk("ioremap filed:%d\n", __LINE__);
return -ENOMEM;
}
vir_led3 = vir_led1;
vir_rcc = ioremap(PHY_RCC_ADDR, 4);
if (vir_rcc == NULL)
{
printk("ioremap filed:%d\n", __LINE__);
return -ENOMEM;
}
printk("物理地址映射成功\n");
// 寄存器的初始化
// rcc
(*vir_rcc) |= (3 << 4);
// led1
vir_led1->MODER &= (~(3 << 20));
vir_led1->MODER |= (1 << 20);
vir_led1->ODR &= (~(1 << 10));
// led2
vir_led2->MODER &= (~(3 << 20));
vir_led2->MODER |= (1 << 20);
vir_led2->ODR &= (~(1 << 10));
// led3
vir_led3->MODER &= (~(3 << 16));
vir_led1->MODER |= (1 << 16);
vir_led1->ODR &= (~(1 << 8));
printk("寄存器初始化成功\n");
return 0;
}
static int __init mycdev_init(void)
{
int ret;
// 1.分配字符设备驱动对象
cdev = cdev_alloc();
if (cdev == NULL)
{
printk("申请字符设备驱动对象失败\n");
ret = -EFAULT;
goto OUT1;
}
printk("申请字符设备驱动对象成功\n");
// 2.初始化字符设备驱动对象
cdev_init(cdev, &fops);
// 3.申请设备号
if (major > 0) // 静态指定
{
ret = register_chrdev_region(MKDEV(major, minor), 3, "mycdev");
if (ret)
{
printk("静态指定设备号失败\n");
goto OUT2;
}
}
else
{
ret = alloc_chrdev_region(&devno, minor, 3, "mycdev");
if (ret)
{
printk("动态指定设备号失败\n");
goto OUT2;
}
minor = MINOR(devno);
major = MAJOR(devno);
}
printk("申请设备号成功\n");
// 4.注册字符设备驱动对象
ret = cdev_add(cdev, MKDEV(major, minor), 3);
if (ret)
{
printk("注册字符设备驱动对象失败\n");
goto OUT3;
}
printk("注册字符设备驱动对象成功\n");
// 向上提交目录
cls = class_create(THIS_MODULE, "Mycdev");
if (IS_ERR(cls))
{
printk("向上提交目录信息失败\n");
ret = -PTR_ERR(cls);
goto OUT4;
}
printk("向上提交目录信息成功\n");
// 向上提交节点信息
int i;
for (i = 0; i < 3; i++)
{
dev = device_create(cls, NULL, MKDEV(major, i), NULL, "Mycdev%d", i);
if (IS_ERR(dev))
{
printk("向上提交设备节点失败\n");
ret = -PTR_ERR(dev);
goto OUT5;
}
}
printk("向上提交设备节点成功\n");
all_led_init();
return 0;
OUT5:
for (--i; i >= 0; i--)
{
device_destroy(cls, MKDEV(major, i));
}
class_destroy(cls);
OUT4:
cdev_del(cdev);
OUT3:
unregister_chrdev_region(MKDEV(major, minor), 3);
OUT2:
kfree(cdev);
OUT1:
return ret;
return 0;
}
static void __exit mycdev_exit(void)
{
// 取消物理内存的映射
iounmap(vir_led1);
iounmap(vir_led2);
iounmap(vir_rcc);
// 销毁设备节点信息
int i;
for (i = 0; i < 3; i++)
{
device_destroy(cls, MKDEV(major, i));
}
// 销毁目录
class_destroy(cls);
// 注销字符设备驱动对象
cdev_del(cdev);
// 释放设备号
unregister_chrdev_region(MKDEV(major, minor), 3);
// 释放对象空间
kfree(cdev);
}
module_init(mycdev_init);
module_exit(mycdev_exit);
MODULE_LICENSE("GPL");
头文件
#ifndef __HEAD_H__
#define __HEAD_H__
typedef struct
{
unsigned int MODER;
unsigned int OTYPER;
unsigned int OSPEEDR;
unsigned int PUPDR;
unsigned int IDR;
unsigned int ODR;
}gpio_t;
#define PHY_LED1_ADDR 0X50006000
#define PHY_LED2_ADDR 0X50007000
#define PHY_LED3_ADDR 0X50006000
#define PHY_RCC_ADDR 0X50000A28
#define LED_ON _IOW('l',1,int) //开灯
#define LED_OFF _IOW('l',0,int) //关灯
#endif
#include
#include
#include
#include
#include
#include
#include
#include "head.h"
#include
int main(int argc, const char *argv[])
{
char buf[128] = {};
int a, b;
int fd = open("/dev/Mycdev0", O_RDWR);
if (fd < 0)
{
printf("打开设备文件失败\n");
exit(-1);
}
printf("成功打开设备文件\n");
while (1)
{
printf("请选择灯控制方式:0/1(开关灯)>");
scanf("%d", &a);
printf("请选择控制几号灯:1/2/3(开关灯)>");
scanf("%d", &b);
switch (a)
{
case 0:
ioctl(fd, LED_OFF, &b);
break;
case 1:
ioctl(fd, LED_ON, &b);
break;
default:
break;
}
}
close(fd);
return 0;
}