夜间灯光数据dn值_DMSP/OLS和VIIRS/DNB夜间灯光影像的校正及拟合

原标题:DMSP/OLS和VIIRS/DNB夜间灯光影像的校正及拟合

夜间灯光数据能够表征人类活动强度和城市化进程,应用最广泛的夜间灯光数据为美国国防气象卫星(DMSP)搭载的可见红外成像线性扫描业务系统(OLS)数据及美国新一代国家极轨卫星(Suomi-NPP)搭载的可见光近红外成像辐射(VIIRS)传感器数据。夜间灯光影像将城镇夜光及其他发光体表征为亮值斑块即灯光区,使城镇等发光体明显区别于黑暗的无灯光背景区,避免了传统遥感影像城镇区域与非城镇区域混淆问题,为监测人类活动提供了数据源,在宏观尺度的城市研究中具有巨大的潜力和应用前景。

由于OLS传感器设计局限导致DMSP/OLS影像之间不连续、像元DN值过饱和等问题,数据于2013年截止,现被VIIRS白天/夜间波段(DNB)夜间灯光数据取代。为获得长时间序列稳定的夜间灯光数据,需要对两者夜间灯光数据进行校正与拟合。目前,部分学者针对DMSP/OLS数据提出了多种不变目标区域的相互校正方法,这些研究选择亮值年际变化小的区域作为标准区域,确立参考影像数据,对其他年份影像数据建立各类回归模型进行相互校正,形成了适用于我国区域完整的夜间灯光影像校正的技术方法。后又有学者提出了各种基于植被指数构建城市灯光指数为DMSP/OLS数据去饱和的方法,该类方法侧重单一影像校正,不同年际影像校正需获取相应年植被指数数据。而VIIRS/DNB数据在城市研究中需要去除火点噪声,且该数据存在时间短,不足以支持长时间序列的研究。大多数学者在长时间序列研究中对两种夜间灯光数据设置不同的处理方法,降低了结果的可比性,对两者数据拟合的研究鲜有报道。

为研究校正后获得的长时间序列夜间灯光数据的效果,对其模拟社会经济参量的能力进行探索,选择新疆连续年份的夜间灯光数据模拟社会经济参量。以往基于两种夜间灯光数据的社会经济参量研究在省级和县级两个尺度上与区域社会经济参量进行回归分析,大多数研究是单一年份数据的线性模拟或两种数据的对比模拟,且在部分模拟研究中没有对数据进行校正,少有研究长时间序列下校正后的模拟。利用校正后的夜间灯光数据对社会经济参量模拟的研究有助于提升数据可靠性与解释力,对数据广泛应用具有重要意义。

本文选择不变目标区域法先校正DMSP/OLS影像数据,用校正后的DMSP/OLS影像数据对VIIRS/DNB进行重分类,利用两者在时间和空间上的重叠数据对VIIRS/DNB影像数据进行线性拟合;选择新疆不同年份的夜间灯光数据模拟社会经济参量,分析校正后长时间序列夜间灯光数据与部分社会经济参量的关系,以得到长时间序列连续稳定的夜间灯光数据,提升数据可比性及应用能力,拓展夜间灯光数据的应用范围,加强对长时间序列下人类活动及其生态环境影响的理解。

1 数据源及数据概况1.1 数据源

DMSP/OLS稳定夜间灯光影像数据集由美国国家海洋与大气管理局(NOAA)下属的美国国家地球物理数据中心(NGDC)发布,选择全部34期影像,影像数据集由6个不同的DMSP卫星F10(1992—1994年)、F12(1994—1999年)、F14(1997—2003年)、F15(2000—2007年)、F16(2004—2009年)、F18(2010—2013年)获取。全部影像均在NGDC的网站下载。

北半球的VIIRS/DNB合成的月平均灯光辐射数据集,冬季像元DN值受积雪影响,夏季像元DN值受植被影响,因此,选择2012—2017年10月影像数据,全部影像在NGDC的网站下载。

本文在处理过程中使用的中国县级行政区划矢量数据来自国家基础地理信息中心的全国1:400万数据库,新疆1996—2016年年末人口总数、生产总值、平均每天耗电量、建设用地数据来自新疆维吾尔自治区统计局发布的《新疆统计年鉴》。

1.2 数据概况分析

DMSP/OLS稳定夜间灯光辐射数据产品包括由多个DMSP卫星传感器获取的1992—2013年共34期影像,影像去除了极光、野火等不稳定光源,以及月光、云的干扰,最后的数据值为无云图幅稳定光的年均灰度(DN)值,其范围是0~63。该影像数据集是由DMSP不同传感器获得的,而不同DMSP卫星搭载的OLS传感器具有不同的辐射探测性能、飞行前辐射标定,探测光谱波段也存在细微差别,且随着时间的推移,各传感器的辐射探测能力也逐渐衰退。影像数据未进行星上辐射校正和相互校正,造成同一个卫星传感器获取的连续不同年度的影像间相同位置的亮值像元DN值之间的异常。且由不同的传感器获取的同一年度的影像数据之间存在差异,主要表现为影像中的亮值像元的DN值总和不相等,以及影像间相同位置的亮值像元的DN值不同。长时间序列的DMSP/OLS稳定夜间灯光影像数据集存在的这些问题导致不同年份、不同传感器间的长时间序列数据不具有连续性和可比性。因此,利用该数据集进行长时间尺度的应用研究时,必须进行相互校正。但影像中像元最大值DN值为63,且许多城市核心

你可能感兴趣的:(夜间灯光数据dn值)