Ray Tracing in One Week Note 1

Write a Path Tracer

  • C++ fast, portable, most renders use
    inheritance and operator overloading is useful

Chapter 1 Output an image

  • PPM example: an example of a color RGB image stored in PPM
    need PPM viewer to run the code.

      P3 // Magic Number means type is pixmap and colors are coding with ASCII
      3 2 // 3 columns, 2 rows
      255 // max colors
      ------声明部分-------
      ---------------------
      255 0 0
      0 255 0
      0 0 255
      255 255 0 
      255 255 255 
      0 0 0
    

Chapter 2 vec3 Class

4D vector
  • 3D + a coord for geometry
  • RGB + Alpha transparency channel

[vec3 → color, locations, directions, offsets]
define a vec3 class by self, and overload the operator( +, -, +=, -=, *=, /=, etc )

[Key word "inline": 指定内联函数,修饰函数,用于函数定义。
目的是消除函数调用时的时间开销,常应用于频繁执行的函数。]

Chapter 3 Rays, camera, background

Ray Class & A computation of color

Ray(射线) Function: P(t) = A + t*B
P : 3D postion
A : ray origin(起点,原点)
B : ray direction
t : real number(常数), float
( t > 0, half-line, ray; t < 0, go any where of 3D line.)

Core of Ray tracer

  • send rays through pixels
  • compute what color is seen in direction of those rays

Calculate form

  • which ray goes from the eyes to pixel
  • compute what that ray intersects(横断,贯穿)
  • compute a color for that intersections point

Color(Ray) function - linear blends/ linear interpolation/ lerp(线性插值)
blended_value = ( 1 - t ) * start_value + t * end_value ( 0.0 < t < 1.0 )

Chapter 4 Adding a sphere(范围、领域、球)

原点为球心,基于半径R的球体方程:x² + y² + z² = R²
for any ( x, y, z ), if x² + y² + z² = R², then ( x, y, z ) is on the sphere and otherwise it is not.

球心原点为( cx, cy, cz ) 时,球体方程为 (x-cx)² + (y-cy)² + (z-cz)² = R²
球心到球上任意一点的向量为(P - C)
其中C = ( cx, cy, cz ), P = ( x, y, z )
可得到 dot((P - C), (P - C)) =(x-cx)² + (y-cy)² + (z-cz)²dot((P - C), (P - C)) = R²
any point P that satisfies the equation is on the sphere

Whether the ray P(t) = A + t*B hits the sphere anywhere?
If hit,
dot((P(t) - C), (P(t) - C)) = R²dot(A + t*B - C), (A + t*B - C)) = R²
所以,t²*dot(B, B) + 2t*dot(B, A-C) + dot(A-C, A-C) - R² = 0(t和R均为常数)
该方程可以看做是关于t的二次方程, 有两个有效解、一个有效解、无解三种情况,分别可以看做是射线和球体有两个交点、一个交点和不相交。

但,若在该方程无解时,将圆心的z坐标取在反方向,将会获得位于摄像机背后的图像。

Chapter 5 Surface normals and multiple objects

Surface Normals 法线

  • points out
  • unit length

For a sphere, the normal is in the direction of hitpoint minus the center.


  • Assume N(visualizing normal) is a unit length vector-so each component is between -1 to 1.
    Map each component to the interval from 0 to 1.
    Map x/y/z to r/g/b.
    Assume the closest hit point ( smallest t )
    Then, make an abstract class for anything might hit by ray, and make both a sphere and a list of spheres just something you can hit.
    called it Hitable( an object of object oriented )

The Hitable abstract class:

    #ifndef HITABLEH
    #define HITABLEH

    #include "ray.h"

    struct hit_record {
        float t;
        vec3 p;
        vec3 normal;
    };
    
    class hitable {
        public:
            virtual bool hit( const ray& r, float t_min, float t_max, hit_record& rec) const = 0;
    };
    #endif

The sphere:

    #ifndef SPHEREH
    #define SPHEREH

    #include "hitable.h"

    class sphere: public hitable {
        public:
            sphere( ) { }
            sphere( vec3 cen, float r ) : center ( cen ), radius( r ) { };
            virtual bool hit ( const ray& r, float tmin, float tmax, hit_record& rec ) const;
            vec3 center;
            float radius;
    };

        bool sphere :: hit ( const ray& r, float t_min, float t_max, hit_record& rec ) const {
            vec3 oc =r.origin() - center;
            float a = dot( r.direction( ), r.direction( ) );
            float b = dot( oc, r.direction( ) );
            float c = dot( oc,oc ) - radius*radius;
            float discriminant = b*b - a*c;
            if ( discriminant > 0 ) {
                float temp = ( -b - sqrt( b*b - a*c ) ) / a;
                if ( temp < t_max && temp > t_min ) {
                    rec.t = temp;
                    rec.p = r.point_at_parameter( rec.t );
                    rec.normal = ( rec.p - center ) / radius;
                    return true;
                }
            }
        return false;
}

    #endif

The list of objects:

    #ifndef HITABLELISTH
    #define HITABLELISTH

    #include "hitable.h"

    class hitable_list : public hitable {
        public:
            hitable_list( ) { };
            hitable_list( hitable **l, int n) { list = l; list_size = n; }
            virtual bool hit( const ray& r, float tmin, float tmax, hit_record& rec ) const;
            hitable **list;
            int list_size;
    };

    bool hitable_list :: hit( const ray& r, float t_min, float t_max, hit_record& rec) const {
        hit_record temp_rec;
        bool hit_anything = false;
        double closest_so_far = t_max;
        for ( int i =0; i < list_size; i++ ) {
            if ( list[i] -> hit ( r, t_min, closest_so_far, temp_rec)) {
                hit_anything = true;
                closest_so_far = temp_rec.t;
                rec = temp_rec;
            }
        }
        return hit_anything;
    }
    #endif

The main:

    #include 
    #include "sphere.h"
    #include "hitable_list.h"
    #include "float.h"

    vec3 color( const ray& r, hitable *world) {
        hit_record rec;
        if( world -> hit (r, 0, 0, MAXFLOAT, rec ) ) {
            return 0.5*vec3( rec.normal.x( ) + 1, rec.normal.y( ) + 1, rec.normal.z( ) + 1 );
        }
        else {
            vec3 unit_direction = unit_vector ( r.direction( ) );
            float t = 0.5 * (unit_direction.y( ) + 1.0);
            return ( 1.0 - t ) * vec3 ( 1.0, 1.0, 1,0 ) + t * vec3 ( 0.5, 0.7, 1.0 );
        }
    }

    int main ( ) {
        int nx = 200;
        int ny = 100;
        std :: cout << "P3\n" << nx << " " << ny << "\n255\n";
        vec3 lower_left_corner( -2.0, -1.0, -1.0 );
        vec3 horizontal ( 4.0, 0.0, 0.0 );
        vec3 vertical ( 0.0, 2.0, 0.0 );
        vec3 origin ( 0.0, 0.0, 0.0 );
        hitable *list[2];
        list[0] = new sphere( vec3( 0, 0, -1 ), 0.5 );
        list[1] = new sphere( vec3( 0, -100, 5 ), 100);
        hitable *world = new hitable_list( list, 2 );
        for( int j = ny - 1; j >= 0; j-- ) {
            for( int i = 0; i <( nx; i++ ) {
                float u = float(i) / float(nx);
                float v = float(i) / float(ny);
                ray r( origin, lower_left_corner + u*horizontal + v*vertical );
                vec3 p = r.point_at_parameter( 2, 0 );
                vec3 col = color( r, world );
                int ir = int( 255.99 * col[0] );
                int ig = int( 255.99 * col[1] );
                int ib = int( 255.99 * col[2] );

                std :: cout << ir << " " << ig << " " << ib << "\n";
            }
        }
    }

你可能感兴趣的:(Ray Tracing in One Week Note 1)