- phoenix无法连接hbase shell创建表失败_报错_PleaseHoldException: Master is initializing---记录020_大数据工作笔记0180
添柴程序猿
hbase连接报错phoenix连接hbasephoenixPleaseHoldExcep
今天发现,我的phoenix,去连接hbase集群,怎么也连不上了,奇怪了...弄了一晚上org.apache.hadoop.hbase.PleaseHoldException:Masterisinitializing[root@hadoop120bin]#ll总用量184-rwxr-xr-x.1rootroot36371月222020chaos-daemon.sh-rwxr-xr-x.1root
- Hadoop的运行模式
对许
#Hadoophadoop大数据分布式
Hadoop的运行模式1、本地运行模式2、伪分布式运行模式3、完全分布式运行模式4、区别与总结Hadoop有三种可以运行的模式:本地运行模式、伪分布式运行模式和完全分布式运行模式1、本地运行模式本地运行模式无需任何守护进程,单机运行,所有的程序都运行在同一个JVM上执行Hadoop安装后默认为本地模式,数据存储在Linux本地。在本地模式下调试MapReduce程序非常高效方便,一般该模式主要是在
- Hadoop的mapreduce的执行过程
画纸仁
大数据hadoopmapreduce大数据
一、map阶段的执行过程第一阶段:把输入目录下文件按照一定的标准逐个进行逻辑切片,形成切片规划。默认Splitsize=Blocksize(128M),每一个切片由一个MapTask处理。(getSplits)第二阶段:对切片中的数据按照一定的规则读取解析返回对。默认是按行读取数据。key是每一行的起始位置偏移量,value是本行的文本内容。(TextInputFormat)第三阶段:调用Mapp
- Hadoop:分布式计算平台初探
dccrtbn6261333
大数据运维java
Hadoop是一个开发和运行处理大规模数据的软件平台,是Apache的一个用java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算。Hadoop框架中最核心设计就是:MapReduce和HDFS。MapReduce提供了对数据的计算,HDFS提供了海量数据的存储。MapReduceMapReduce的思想是由Google的一篇论文所提及而被广为流传的,简单的一句话解释M
- 【Hadoop】如何理解MapReduce?
2302_79952574
hadoopmapreduce数据库
MapReduce是一种用于处理大规模数据集的编程模型和计算框架。它的核心思想是将复杂的计算任务分解为两个简单的阶段:Map(映射)和Reduce(归约)。通过这种方式,MapReduce可以高效地并行处理海量数据。一.MapReduce的核心概念1.Map(映射):将输入数据分割成小块,并对每个小块进行初步处理。输出键值对(key-valuepairs),例如。2.Shuffle和Sort(洗牌
- Hadoop:全面深入解析
CloudJourney
hadoop大数据分布式
Hadoop是一个用于大规模数据处理的开源框架,其设计旨在通过集群的方式进行分布式存储和计算。本篇博文将从Hadoop的定义、架构、原理、应用场景以及常见命令等多个方面进行详细探讨,帮助读者全面深入地了解Hadoop。1.Hadoop的定义1.1什么是HadoopHadoop是由Apache软件基金会开发的开源软件框架,用于存储和处理大规模数据。其核心组件包括Hadoop分布式文件系统(HDFS)
- Hadoop介绍:什么是Hadoop?了解Hadoop的应用
Zzzxt007
hadoop大数据分布式
一、认识Hadoop框架Hadoop是一个提供分布式存储和计算的开源软件框架,使用Java语言编写,具有高扩展性、高容错性、无共享和高可用(HA)等特点,非常适合处理海量数据。它基于Google发布的MapReduce论文实现,并且应用了函数式编程的思想。Hadoop框架主要包括HDFS(HadoopDistributedFileSystem,Hadoop分布式文件系统)、MapReduce、YA
- Hbase在hdfs上的archive目录占用空间过大
宝罗Paul
大数据hbase
hbase版本:1.1.2hadoop版本:2.7.3Hbase在hdfs上的目录/apps/hbase/data/archive占用空间过大,导致不停地发出hdfs空间使用率告警。【问题】告警信息alert:datanode_storageistriggered告警信息表明某个或某些datanode的HDFS存储空间使用率已超过阈值(我们设置的是80%),需要清理。[hdfs@master-2r
- Hadoop、Spark、Flink Shuffle对比
逆袭的小学生
hadoopsparkflink
一、Hadoop的shuffle前置知识:Map任务的数量由Hadoop框架自动计算,等于分片数量,等于输入文件总大小/分片大小,分片大小为HDFS默认值128M,可调Reduce任务数由用户在作业提交时通过Job.setNumReduceTasks(int)设置数据分配到Reduce任务的时间点,在Map任务执行期间,通过Partitioner(分区器)确定每个键值对的目标Reduce分区。默认
- 【Hadoop】什么是Zookeeper?如何理解Zookeeper?
2302_79952574
hadoopzookeeper大数据
ZooKeeper是一个开源的分布式应用程序协调服务,可以为分布式应用提供一致性的服务,功能包括:配置维护、名字服务、分布式同步、组服务等等。ZooKeeper的目标是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。1.Zookeeper的特点最终一致性:Client不论连接到哪个Server,展示给它的都是同一个视图。可靠性:如果某个消息被一台服务器接受,那么它
- 【Hadoop】详解HDFS
2302_79952574
hadoophdfs大数据
Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件上的分布式文件系统,它是一个高度容错性的系统,适合部署在廉价的机器上,能够提供高吞吐量的数据访问,非常适合大规模数据集上的应用。为了做到可靠性,HDFS创建了多份数据块的副本,并将它们放置在服务器群的计算节点中,MapReduce可以在它们所在的节点上处理这些数据。1.HDFS的设计目标存储大规模数据:HDFS可以存储并管理PB级甚至
- HDFS的设计架构
F_0125
Hadoophdfshbasehadoop
HDFS是Hadoop生态系统中的分布式文件系统,设计用于存储和处理超大规模数据集。它具有高可靠性、高扩展性和高吞吐量的特点,适合运行在廉价硬件上。1.HDFS的设计思想HDFS的设计目标是解决大规模数据存储和处理的问题,其核心设计思想包括:(1)分布式存储-数据被分割成多个块(Block),并分布存储在集群中的多个节点上。-每个数据块默认大小为128MB或256MB,可以根据需求配置。(2)高容
- 大数据Flink(六十四):Flink运行时架构介绍_flink中涉及到的大数据组件
2401_84181942
程序员大数据flink架构
于是人们提出了“不共享任何东西”(share-nothing)的分布式架构。从以Greenplum为代表的MPP(MassivelyParallelProcessing,大规模并行处理)架构,到Hadoop、Spark为代表的批处理架构,再到Storm、Flink为代表的流处理架构,都是以分布式作为系统架构的基本形态的。我们已经知道,Flink就是一个分布式的并行流处理系统。简单来说,它会由多个进
- 大数据运维实战指南:零基础入门与核心技术解析(第一篇)
emmm形成中
大数据运维
大数据运维实战指南:零基础入门与核心技术解析(第一篇)系列文章目录第一篇:大数据运维概述与核心技能体系第二篇:Hadoop生态体系与集群部署实战第三篇:分布式存储系统运维与优化第四篇:资源调度框架YARN/K8s深度解析第五篇:实时计算框架Flink/Spark运维指南第六篇:大数据监控体系与自动化运维第七篇:云原生时代的大数据运维实践第八篇:数据安全与合规性管理第九篇:性能调优与故障排查案例集第
- hadoop框架与核心组件刨析(四)MapReduce
小刘爱喇石( ˝ᗢ̈˝ )
hadoopmapreduce大数据
MapReduce是一种用于大规模数据处理的编程模型和计算框架,最初由Google提出,后来由ApacheHadoop实现并广泛应用。它的核心思想是将数据处理任务分解为两个阶段:Map和Reduce,并通过分布式计算并行处理海量数据。MapReduce的核心思想分而治之:将大规模数据集分割成多个小块,分布到集群中的多个节点上并行处理。Map阶段:将输入数据转换为键值对(Key-ValuePair)
- hadoop 运行java程序_原生态在Hadoop上运行Java程序
淇水煮汤
hadoop运行java程序
第一种:原生态运行jar包1,利用eclipse编写Map-Reduce方法,一般引入Hadoop-core-1.1.2.jar。注意这里eclipse里没有安装hadoop的插件,只是引入其匝包,该eclipse可以安装在windows或者linux中,如果是在windows中安装的,且在其虚拟机安装的linux,可以通过共享文件夹来实现传递。2,编写要测试的数据,如命名为tempdata3,利
- hadoop运行java程序命令_使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0
emi0wb
网上的MapReduceWordCount教程对于如何编译WordCount.java几乎是一笔带过…而有写到的,大多又是0.20等旧版本版本的做法,即javac-classpath/usr/local/hadoop/hadoop-1.0.1/hadoop-core-1.0.1.jarWordCount.java,但较新的2.X版本中,已经没有hadoop-core*.jar这个文件,因此编辑和打
- 大数据Hadoop集群运行程序
赵广陆
hadoophadoopbigdatamapreduce
目录1运行自带的MapReduce程序2常见错误1运行自带的MapReduce程序下面我们在Hadoop集群上运行一个MapReduce程序,以帮助读者对分布式计算有个基本印象。在安装Hadoop时,系统给用户提供了一些MapReduce示例程序,其中有一个典型的用于计算圆周率的Java程序包,现在运行该程序。该jar包文件的位置和文件名是“~/hadoop-3.1.0/share/Hadoop/
- hadoop框架与核心组件刨析(三)YARN
小刘爱喇石( ˝ᗢ̈˝ )
hadoop大数据分布式
一、负载均衡的概念负载均衡(LoadBalancing)是一种将工作负载(如网络流量、计算任务或数据请求)分配到多个资源(如服务器、计算节点或存储设备)的技术,目的是优化资源使用、最大化吞吐量、最小化响应时间,并避免单个资源过载。负载均衡广泛应用于计算机网络、分布式系统、云计算等领域。负载均衡的核心目标提高性能:通过将负载分配到多个资源,避免单个资源成为瓶颈,从而提高系统的整体性能。提高可用性:如
- Doris 数据集成 Kafka
不二人生
Doris实战doris数据仓库
Doris数据集成Kafka这是我们Doris数据集成篇的第二篇,前面我们介绍过通过Catalog进行集成的例子Doris基础篇—数据集成Catalog目前公司的很多数据服务都开始使用Doris了,目前使用下来感觉还是很方便的,比起Hadoop那一套少了很多运维的成本,而且整体的效率也不错,现在也要把ELK那一套日志分析的替换掉,后面日志分析也走Doris。关于如何使用Doris做日志分析,可以参
- 大数据面试系列之——Hadoop
潜心_守道
大数据面经面试大数据Hadoop
Hadoop的三个核心:HDFS(分布式存储系统)MapReduce(分布式计算系统)YARN(分布式资源调度)1.Hadoop集群的几种搭建模式1.单机模式:直接解压安装,不存在分布式存储系统2.伪分布式:NameNode和DataNode安装于同一个节点,无法体现分布式处理的优势。3.完全分布式:一个主节点,多个从节点,存在如果主节点宕机,集群就无法使用的缺点。4.高可用模式:多个主节点,多个
- Azkaban其一,介绍、体系架构和安装
出发行进
#AzkabanAzkabanlinux
目录一、简介二、Azkaban的体系结构三、Azkaban的安装步骤1、上传,解压2、生成mysql的元数据3、配置web-server4、配置exec-server5、修改所有的.sh的执行权限一、简介遇到了什么问题才会使用Azkaban?比如:想启动hadoop集群先启动zk集群,再启动hdfs,再启动yarn,再启动日志系统工作过程中总会遇到多个脚本执行的时候有顺序。任务可以有一个编排的工具
- hdfs HA 机制, 一台 namenode 宕机了, joualnode , namenode , edit.log fsimage 的 变 化?思维导图 代码示例(java 架构)
用心去追梦
hdfsjava架构
HDFS(HadoopDistributedFileSystem)的高可用性(HA,HighAvailability)机制旨在解决单点故障问题,确保即使在NameNode出现故障的情况下,文件系统仍然可以继续正常工作。在HA配置中,有两个或多个NameNode:一个处于活动状态(Active),另一个作为备用(Standby)。JournalNodes用于同步编辑日志(EditLog),以确保两个
- IntelliJ IDEA + Maven环境编写第一个hadoop程序
IT独白者
hadoophadoop
1.新建IntelliJ下的maven项目点击File->New->Project,在弹出的对话框中选择Maven,JDK选择你自己安装的版本,点击Next2.填写Maven的GroupId和ArtifactId你可以根据自己的项目随便填,点击Next这样就新建好了一个空的项目这里程序名填写WordCount,我们的程序是一个通用的网上的范例,用来计算文件中单词出现的次数3.设置程序的编译版本打开
- hadoop
百里自来卷
hadoop大数据分布式
Hadoop是一个用于分布式存储和处理大规模数据的开源框架,它的架构主要由以下几个核心组件组成:1.Hadoop生态系统核心组件Hadoop的核心架构主要包括HDFS(HadoopDistributedFileSystem)和YARN(YetAnotherResourceNegotiator),以及MapReduce计算框架:1.1HDFS(分布式文件系统)HDFS负责存储大规模数据,采用主从架构
- 第一个Hadoop程序
lqlj2233
hadoop大数据分布式
编写和运行第一个Hadoop程序是学习Hadoop的重要步骤。以下是一个经典的“WordCount”程序示例,它统计文本文件中每个单词出现的次数。我们将使用Java编写MapReduce程序,并在Hadoop集群上运行它。一、WordCount程序概述WordCount是Hadoop的“HelloWorld”程序。它的基本逻辑如下:Mapper:读取输入文件,将每一行文本拆分为单词,并输出每个单词
- 在虚拟机上安装 Hadoop 全攻略
麻芝汤圆
spark大数据分析hadoop大数据分布式windowslinux服务器
在虚拟机上安装Hadoop是进入大数据处理和分析领域的重要一步。以下将详细讲解在常见虚拟机软件(如VMwareWorkstation、VirtualBox)中,于Linux虚拟机系统安装Hadoop的流程与要点。一、前期准备虚拟机软件与系统镜像:确保已正确安装VMwareWorkstation或VirtualBox等虚拟机软件,并且拥有目标操作系统的镜像文件(如UbuntuServerISO、Ce
- 【自学笔记】Hadoop基础知识点总览-持续更新
Long_poem
笔记hadoop大数据
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Hadoop基础知识点总览1.Hadoop简介2.Hadoop生态系统3.HDFS(HadoopDistributedFileSystem)HDFS基本命令4.MapReduceWordCount示例(Java)5.YARN(YetAnotherResourceNegotiator)6.其他组件简介总结Hadoop基础知识点总
- spark hdfs 常用命令
毛球饲养员
sparksparkhdfs
目录lsrmgettext以下按照使用频率和使用先后顺序排序(纯个人习惯)ls列出hdfs文件系统路径下的目录和文件hdfsdfs-ls列出hdfs文件系统路径下所有的目录和文件hdfsdfs-ls-Rrmhadoopfs-rm...hadoopfs-rm-r...每次可以删除多个文件或目录getlocalfile不能和hdfsfile名字不能相同,否则会提示文件已存在,没有重名的文件会复制到本地
- Spark详解二
卢子墨
Spark原理实战总结spark
八、Spark部署模式1、Local本地模式:运行于本地spark-shell--masterlocal[2](local[2]是说,执行Application需要用到CPU的2个核)2、Standalone独立模式:Spark自带的一种集群模式Spark自己管理集群资源,此时只需要将Hadoop的HDFS启动Master节点有master,Slave节点上有worker启动./bin/spark
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C