【八大排序】-- 计数排序(动图演示)

计数排序介绍

计数排序是一个非基于比较的排序算法。它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。 当然这是一种牺牲空间换取时间的做法,而且当O(k)>O(nlog(n))的时候其效率反而不如基于比较的排序(基于比较的排序的时间复杂度在理论上的下限是O(nlog(n)), 如归并排序,堆排序)。

步骤

  1. 找出待排序的数组中最大最小的元素。
  2. 创建一个临时数组count,数组大小为max-min+1
  3. 统计待排序数组中每个值为i的元素出现的次数,将i-min存入临时数组count的第i-min项。
  4. 将count[i]对应的元素从起始位置放入原数组。

适用范围

适合排序数据再某个区间内且数据集中的数。

复杂度

时间复杂度:O(n+范围)

空间复杂度:O(范围)

稳定性:稳定

范围是指待排序元素中最大值与最小值的差

动图演示

【八大排序】-- 计数排序(动图演示)_第1张图片

 

算法代码

public static void countSort(int[] elem) {
        int min = elem[0];
        int max = elem[0];

        // 1. 找最大值和最小值
        for (int i = 0; i < elem.length; i++) {
            if(min > elem[i]) {
                min = elem[i];
            }
            if(max < elem[i]) {
                max = elem[i];
            }
        }

        // 2. 创建临时数组
        int[] count = new int[max-min+1];


        // 3. 添加到临时数组中
        for (int i = 0; i < elem.length; i++) {
            count[elem[i]-min]++;
        }


        // 4. 遍历临时数组到原数组中
        int index = 0;
        for (int i = 0; i < elem.length; i++) {

            while(count[index] == 0) {
                index++;
            }

            elem[i] = index+min;
            count[index]--;

        }

    }

测试打印

public static void main(String[] args) {
        int arr[] = {45,98,36,85,20,99,79,96,12,13,52,66,88,10,30};
        countSort(arr);
        for (int i: arr) {
            System.out.print(i+" ");
        }
    }

 

你可能感兴趣的:(详解八大排序算法,java,算法,数据结构,排序算法)