深入浅出Pytorch函数——torch.nn.init.orthogonal_

分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 深入浅出Pytorch函数——torch.nn.init.calculate_gain
· 深入浅出Pytorch函数——torch.nn.init.uniform_
· 深入浅出Pytorch函数——torch.nn.init.normal_
· 深入浅出Pytorch函数——torch.nn.init.constant_
· 深入浅出Pytorch函数——torch.nn.init.ones_
· 深入浅出Pytorch函数——torch.nn.init.zeros_
· 深入浅出Pytorch函数——torch.nn.init.eye_
· 深入浅出Pytorch函数——torch.nn.init.dirac_
· 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
· 深入浅出Pytorch函数——torch.nn.init.xavier_normal_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_
· 深入浅出Pytorch函数——torch.nn.init.trunc_normal_
· 深入浅出Pytorch函数——torch.nn.init.orthogonal_
· 深入浅出Pytorch函数——torch.nn.init.sparse_


torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。

根据Saxe, A等人在《Exact solutions to the nonlinear dynamics of learning in deep linear neural networks》中描述的方法,用(半)正交矩阵填充输入的张量或变量。输入张量必须至少是2维的,对于更高维度的张量,超出的维度会被展平,视作行等于第一个维度,列等于稀疏矩阵乘积的2维表示,其中非零元素生成自 N ( 0 , std 2 ) N(0, \text{std}^2) N(0,std2)

语法

torch.nn.init.orthogonal_(tensor, gain=1)

参数

  • tensor:[Tensor] 一个 N N N维张量torch.Tensor,其中 N ≥ 2 N\geq 2 N2
  • gain:[可选] 比例因子

返回值

一个torch.Tensor且参数tensor也会更新

实例

w = torch.empty(3, 5)
nn.init.orthogonal_(w)

函数实现

def orthogonal_(tensor, gain=1):
    r"""Fills the input `Tensor` with a (semi) orthogonal matrix, as
    described in `Exact solutions to the nonlinear dynamics of learning in deep
    linear neural networks` - Saxe, A. et al. (2013). The input tensor must have
    at least 2 dimensions, and for tensors with more than 2 dimensions the
    trailing dimensions are flattened.

    Args:
        tensor: an n-dimensional `torch.Tensor`, where :math:`n \geq 2`
        gain: optional scaling factor

    Examples:
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)
        >>> w = torch.empty(3, 5)
        >>> nn.init.orthogonal_(w)
    """
    if tensor.ndimension() < 2:
        raise ValueError("Only tensors with 2 or more dimensions are supported")

    if tensor.numel() == 0:
        # no-op
        return tensor
    rows = tensor.size(0)
    cols = tensor.numel() // rows
    flattened = tensor.new(rows, cols).normal_(0, 1)

    if rows < cols:
        flattened.t_()

    # Compute the qr factorization
    q, r = torch.linalg.qr(flattened)
    # Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdf
    d = torch.diag(r, 0)
    ph = d.sign()
    q *= ph

    if rows < cols:
        q.t_()

    with torch.no_grad():
        tensor.view_as(q).copy_(q)
        tensor.mul_(gain)
    return tensor

你可能感兴趣的:(深入浅出Pytorch函数,人工智能,深度学习,pytorch,nn,init)