MySQL系统原理

一、Mysql架构图片

MySQL系统原理_第1张图片

        从上图中我们可以看到,整个架构分为两层,上层是MySQLD的被称为的‘SQL Layer’,下层是各种各样对上提供接口的存储引擎,被称为‘Storage Engine Layer’。其它各个模块和组件,从名字上就可以简单了解到它们的作用 。

二、查询执行流程

下面再向前走一些,容我根据自己的认识说一下查询执行的流程是怎样的:

1.连接

  1.1客户端发起一条Query请求,监听客户端的‘连接管理模块’接收请求

  1.2将请求转发到‘连接进/线程模块’

  1.3调用‘用户模块’来进行授权检查

  1.4通过检查后,‘连接进/线程模块’从‘线程连接池’中取出空闲的被缓存的连接线程和客户端请求对接,如果失败则创建一个新的连接请求

2.处理

  2.1先查询缓存,检查Query语句是否完全匹配,接着再检查是否具有权限,都成功则直接取数据返回

  2.2上一步有失败则转交给‘命令解析器’,经过词法分析,语法分析后生成解析树

  2.3接下来是预处理阶段,处理解析器无法解决的语义,检查权限等,生成新的解析树

  2.4再转交给对应的模块处理

  2.5如果是SELECT查询还会经由‘查询优化器’做大量的优化,生成执行计划

  2.6模块收到请求后,通过‘访问控制模块’检查所连接的用户是否有访问目标表和目标字段的权限

  2.7有则调用‘表管理模块’,先是查看table cache中是否存在,有则直接对应的表和获取锁,否则重新打开表文件

  2.8根据表的meta数据,获取表的存储引擎类型等信息,通过接口调用对应的存储引擎处理

  2.9上述过程中产生数据变化的时候,若打开日志功能,则会记录到相应二进制日志文件中

3.结果

  3.1Query请求完成后,将结果集返回给‘连接进/线程模块’

  3.2返回的也可以是相应的状态标识,如成功或失败等

  3.3‘连接进/线程模块’进行后续的清理工作,并继续等待请求或断开与客户端的连接

MySQL系统原理_第2张图片

 三、sql解析顺序

SELECT DISTINCT
    < select_list >
FROM
    < left_table > < join_type >
JOIN < right_table > ON < join_condition >
WHERE
    < where_condition >
GROUP BY
    < group_by_list >
HAVING
    < having_condition >
ORDER BY
    < order_by_condition >
LIMIT < limit_number >

上述sql执行顺序

 1 FROM 
 2 ON 
 3  JOIN 
 4 WHERE 
 5 GROUP BY 
 6 HAVING 
 7 SELECT 
 8 DISTINCT 
 9 ORDER BY 
10 LIMIT 

表;

MySQL系统原理_第3张图片MySQL系统原理_第4张图片

 

 

1. FROM

当涉及多个表的时候,左边表的输出会作为右边表的输入,之后会生成一个虚拟表VT1。

(1-J1)笛卡尔积

计算两个相关联表的笛卡尔积(CROSS JOIN) ,生成虚拟表VT1-J1。

mysql> select * from table1,table2;
+-----+------+-----+------+
| uid | name | oid | uid  |
+-----+------+-----+------+
| aaa | mike |   1 | aaa  |
| bbb | jack |   1 | aaa  |
| ccc | mike |   1 | aaa  |
| ddd | mike |   1 | aaa  |
| aaa | mike |   2 | aaa  |
| bbb | jack |   2 | aaa  |
| ccc | mike |   2 | aaa  |
| ddd | mike |   2 | aaa  |
| aaa | mike |   3 | bbb  |
| bbb | jack |   3 | bbb  |
| ccc | mike |   3 | bbb  |
| ddd | mike |   3 | bbb  |
| aaa | mike |   4 | bbb  |
| bbb | jack |   4 | bbb  |
| ccc | mike |   4 | bbb  |
| ddd | mike |   4 | bbb  |
| aaa | mike |   5 | bbb  |
| bbb | jack |   5 | bbb  |
| ccc | mike |   5 | bbb  |
| ddd | mike |   5 | bbb  |
| aaa | mike |   6 | ccc  |
| bbb | jack |   6 | ccc  |
| ccc | mike |   6 | ccc  |
| ddd | mike |   6 | ccc  |
| aaa | mike |   7 | NULL |
| bbb | jack |   7 | NULL |
| ccc | mike |   7 | NULL |
| ddd | mike |   7 | NULL |
+-----+------+-----+------+
28 rows in set (0.00 sec)

(1)ON过滤

基于虚拟表VT1-J1这一个虚拟表进行过滤,过滤出所有满足ON 谓词条件的列,生成虚拟表VT1-J2。

注意:这里因为语法限制,使用了'WHERE'代替,从中读者也可以感受到两者之间微妙的关系;

mysql> SELECT
    -> *
    -> FROM
    -> table1,
    -> table2
    -> WHERE
    -> table1.uid = table2.uid
    -> ;
+-----+------+-----+------+
| uid | name | oid | uid  |
+-----+------+-----+------+
| aaa | mike |   1 | aaa  |
| aaa | mike |   2 | aaa  |
| bbb | jack |   3 | bbb  |
| bbb | jack |   4 | bbb  |
| bbb | jack |   5 | bbb  |
| ccc | mike |   6 | ccc  |
+-----+------+-----+------+
6 rows in set (0.00 sec)

sql连接图

MySQL系统原理_第5张图片

 

2. WHERE

        对VT1过程中生成的临时表进行过滤,满足WHERE子句的列被插入到VT2表中。

注意:

        此时因为分组,不能使用聚合运算;也不能使用SELECT中创建的别名;

与ON的区别:

        如果有外部列,ON针对过滤的是关联表,主表(保留表)会返回所有的列;

        如果没有添加外部列,两者的效果是一样的;

应用:

        对主表的过滤应该放在WHERE;

        对于关联表,先条件查询后连接则用ON,先连接后条件查询则用WHERE;

mysql> SELECT
    -> *
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = 'mike';
+-----+------+------+------+
| uid | name | oid  | uid  |
+-----+------+------+------+
| aaa | mike |    1 | aaa  |
| aaa | mike |    2 | aaa  |
| ccc | mike |    6 | ccc  |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
4 rows in set (0.00 sec)

3. GROUP BY

        这个子句会把VT2中生成的表按照GROUP BY中的列进行分组。生成VT3表。

注意:

        其后处理过程的语句,如SELECT,HAVING,所用到的列必须包含在GROUP BY中,对于没有出现的,得用聚合函数;

原因:

        GROUP BY改变了对表的引用,将其转换为新的引用方式,能够对其进行下一级逻辑操作的列会减少;

我的理解是:

        根据分组字段,将具有相同分组字段的记录归并成一条记录,因为每一个分组只能返回一条记录,除非是被过滤掉了,而不在分组字段里面的字段可能会有多个值,多个值是无法放进一条记录的,所以必须通过聚合函数将这些具有多值的列转换成单值;

4. HAVING

这个子句对VT3表中的不同的组进行过滤,只作用于分组后的数据,满足HAVING条件的子句被加入到VT4表中。

mysql> SELECT
    -> *
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = 'mike'
    -> GROUP BY
    -> a.uid
    -> HAVING
    -> count(b.oid) < 2;
+-----+------+------+------+
| uid | name | oid  | uid  |
+-----+------+------+------+
| ccc | mike |    6 | ccc  |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
2 rows in set (0.00 sec)

5. SELECT

      这个子句对SELECT子句中的元素进行处理,生成VT5表。

        (5-J1)计算表达式 计算SELECT 子句中的表达式,生成VT5-J1

        (5-J2)DISTINCT

        寻找VT5-1中的重复列,并删掉,生成VT5-J2

        如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT5是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。

        

mysql> SELECT
    -> a.uid,
    -> count(b.oid) AS total
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = 'mike'
    -> GROUP BY
    -> a.uid
    -> HAVING
    -> count(b.oid) < 2;
+-----+-------+
| uid | total |
+-----+-------+
| ccc |     1 |
| ddd |     0 |
+-----+-------+
2 rows in set (0.00 sec)

6.ORDER BY

        从VT5-J2中的表中,根据ORDER BY 子句的条件对结果进行排序,生成VT6表。

注意:

        唯一可使用SELECT中别名的地方;

mysql> SELECT
    -> a.uid,
    -> count(b.oid) AS total
    -> FROM
    -> table1 AS a
    -> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = 'mike'
    -> GROUP BY
    -> a.uid
    -> HAVING
    -> count(b.oid) < 2
    -> ORDER BY
    -> total DESC;
+-----+-------+
| uid | total |
+-----+-------+
| ccc |     1 |
| ddd |     0 |
+-----+-------+
2 rows in set (0.00 sec)

7.LIMIT

        LIMIT子句从上一步得到的VT6虚拟表中选出从指定位置开始的指定行数据。

注意:

        offset和rows的正负带来的影响;

        当偏移量很大时效率是很低的,可以这么做:

        采用子查询的方式优化,在子查询里先从索引获取到最大id,然后倒序排,再取N行结果集

        采用INNER JOIN优化,JOIN子句里也优先从索引获取ID列表,然后直接关联查询获得最终结果

mysql> SELECT
    -> a.uid,
    -> count(b.oid) AS total
    -> FROM
    -> table1 AS a
    -> LEFT JOIN table2 AS b ON a.uid = b.uid
    -> WHERE
    -> a. NAME = 'mike'
    -> GROUP BY
    -> a.uid
    -> HAVING
    -> count(b.oid) < 2
    -> ORDER BY
    -> total DESC
    -> LIMIT 1;
+-----+-------+
| uid | total |
+-----+-------+
| ccc |     1 |
+-----+-------+
1 row in set (0.00 sec)

MySQL系统原理_第6张图片

 参考:

        http://www.cnblogs.com/annsshadow/p/5037667.html

你可能感兴趣的:(sql,数据库)