前置事项:
该问题描述为:当我们知道n 个 3D 空间点以及它们的投影位置时,如何估计相机所在的位姿
解决的问题:已知空间点 P = ( X , Y , Z , 1 ) T P = (X, Y, Z, 1)^T P=(X,Y,Z,1)T 和它投影点 x 1 = ( u 1 , v 1 , 1 ) T x_1 = (u_1, v_1, 1)^T x1=(u1,v1,1)T。求解相机位姿 R , t \boldsymbol {R, t} R,t。
为求解,定义增广矩阵
[ R ∣ t ] = ( t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 ) \boldsymbol {[R| t]} = \begin{pmatrix} t_1&t_2&t_3&t_4 \\\;\\ t_5&t_6&t_7&t_8 \\\;\\ t_9&t_{10}&t_{11}&t_{12} \end{pmatrix} [R∣t]= t1t5t9t2t6t10t3t7t11t4t8t12
我们的目的就是求解这个增广矩阵,利用坐标关系得到:
s ( u 1 v 1 1 ) = ( t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 ) ( X Y Z 1 ) s\begin{pmatrix} u_1&v_1&1 \end{pmatrix} = \begin{pmatrix} t_1&t_2&t_3&t_4 \\\;\\ t_5&t_6&t_7&t_8 \\\;\\ t_9&t_{10}&t_{11}&t_{12} \end{pmatrix}\begin{pmatrix} X&Y&Z&1 \end{pmatrix} s(u1v11)= t1t5t9t2t6t10t3t7t11t4t8t12 (XYZ1)
三对(世界坐标系下)3D-2D(成像平面)匹配点 + 一对验证点。原理图如下:
根据相似三角形的相似关系
Δ O a b − Δ O A B , Δ O b c − Δ O B C , Δ O a c − Δ O A C ⇓ 有如下关系 O A 2 + O B 2 − 2 O A ⋅ O B ⋅ c o s < a , b > = A B 2 O B 2 + O C 2 − 2 O B ⋅ O C ⋅ c o s < b , c > = B C 2 O A 2 + O C 2 − 2 O A ⋅ O C ⋅ c o s < a , c > = A C 2 \Delta Oab - \Delta OAB, \quad \Delta Obc - \Delta OBC, \quad \Delta Oac - \Delta OAC \\\;\\\Downarrow 有如下关系 \\\;\\OA^2 + OB^2 -2OA\cdot OB \cdot cos = AB^2\\ OB^2 + OC^2 -2OB\cdot OC \cdot cos = BC^2 \\ OA^2 + OC^2 -2OA\cdot OC \cdot cos = AC^2 ΔOab−ΔOAB,ΔObc−ΔOBC,ΔOac−ΔOAC⇓有如下关系OA2+OB2−2OA⋅OB⋅cos<a,b>=AB2OB2+OC2−2OB⋅OC⋅cos<b,c>=BC2OA2+OC2−2OA⋅OC⋅cos<a,c>=AC2
记 x = O A / O C , y = O B / O C , v = A B 2 / O C 2 , u v = B C 2 / O C 2 , w v = A C 2 / O C 2 x=OA/OC\quad, y = OB/OC,\quad v=AB^2/OC^2,\quad uv=BC^2/OC^2,\quad wv=AC^2/OC^2 x=OA/OC,y=OB/OC,v=AB2/OC2,uv=BC2/OC2,wv=AC2/OC2
推理可得:
( 1 − u ) y 2 − u x 2 − c o s < b , c > y + 2 u x y ⋅ c o s < a , b > + 1 = 0 ( 1 − w ) x 2 − w y 2 − c o s < a , c > x + 2 w x y ⋅ c o s < a , b > + 1 = 0 (1-u)y^2-ux^2-cosy+2uxy\cdot cos+1=0 \\(1-w)x^2-wy^2-cosx+2wxy\cdot cos+1=0 (1−u)y2−ux2−cos<b,c>y+2uxy⋅cos<a,b>+1=0(1−w)x2−wy2−cos<a,c>x+2wxy⋅cos<a,b>+1=0
求解完成,其中只有 x , y x,y x,y未知,二元二次方程组,可以用吴氏消化法求解。最终最多得到4个解,用验证点对进行验证,得到正确的点即可。
一种通用做法:用来对PnP或ICP的结果进行优化。
用矩阵形式写出像素位置与空间点公式(理论上成立的等式(没有误差时)):
s i [ u i v i 1 ] = K e x p ( ξ ˆ ) [ X i Y i Z i 1 ] ( 1 ) ⇓ 即 s i u i = K ⋅ e x p ( ξ ˆ ) ⋅ P i ( 2 ) ⇓ 构建最小二乘问题 ξ ∗ = a r g min ξ 1 2 ∑ i = 1 n ∥ u i − 1 s i K exp ( ξ ˆ ) P i ∥ 2 2 ( 3 ) s_i\begin{bmatrix}u_i\\v_i\\1\end{bmatrix} = Kexp(\xi\^{})\begin{bmatrix}X_i\\Y_i\\Z_i\\1\end{bmatrix} \qquad\qquad\qquad\qquad (1)\\\; \Downarrow即\qquad \qquad\qquad\qquad\qquad\\\; \\s_i\boldsymbol u_i = K\cdot exp(\xi\^{})\cdot P_i \qquad \qquad\qquad\qquad\qquad(2)\\\; \\\Downarrow 构建最小二乘问题\qquad \qquad\\\; \\\xi^* = arg\min\limits_\xi \frac{1}{2}\sum\limits_{i=1}^n\begin{Vmatrix}u_i- \frac{1}{s_i} K\exp(\xi\^{})P_i\end{Vmatrix}^2_2\qquad(3) si uivi1 =Kexp(ξˆ) XiYiZi1 (1)⇓即siui=K⋅exp(ξˆ)⋅Pi(2)⇓构建最小二乘问题ξ∗=argξmin21i=1∑n ui−si1Kexp(ξˆ)Pi 22(3)
在上式中:
重投影误差:用3D和估计位姿投影得到的位置和观测得到的位置作差得到的。实际中利用很多点调整相机位姿使得这个值变小,但不会精确为0.
此外,还有 e e e 关于空间点 P P P 的导数:
以上两个导数矩阵分别是观测相机方程关于相机位姿和特征点的导数矩阵。在优化中能提供迭代方向。
问题:有一组匹配好的3D点:
P = { p 1 , . . . , p n } , P ′ = { p 1 ′ , . . . , p n ′ } P=\left\{p_1, ..., p_n \right\}, \qquad P' = \left\{p'_1, ..., p'_n\right\} P={p1,...,pn},P′={p1′,...,pn′}
欲求一个欧式变换 R , t R,t R,t,使:
∀ i , p i = R p i ′ + t {\forall i}, \qquad p_i = Rp'_i + t ∀i,pi=Rpi′+t
用ICP(Iterative Closest Point)求解,没有出现相机模型,和相机无关,故激光SLAM中也有ICP。
定义误差:
e i = p i − ( R p i ′ + t ) e_i = p_i - (Rp'_i + t) ei=pi−(Rpi′+t)
构建最小二乘问题:使得误差平方和最小
min R , t J = 1 2 ∑ i = 1 n ∣ ∣ p i − ( R p i ′ + t ) ∣ ∣ 2 2 \min\limits_{R,t} J = \frac{1}{2}\sum\limits_{i=1}^n||p_i-(Rp'_i+t)||_2^2 R,tminJ=21i=1∑n∣∣pi−(Rpi′+t)∣∣22
求解问题:
和前边介绍的一样,构建G2O,然后导数用李代数扰动模型即可。
min ξ = 1 2 ∑ i = 1 n ∣ ∣ ( p i − e x p ( ξ \qquad\qquad\qquad\qquad\qquad\qquad\min\limits_\xi = \frac{1}{2}\sum\limits_{i=1}^n||(p_i-exp(\xi ξmin=21i=1∑n∣∣(pi−exp(ξ^ ) p i ′ ) ∣ ∣ 2 2 )\;p'_i)||^2_2 )pi′)∣∣22
注意:在唯一解的情况下,只要我们能找到极小值解,那么该值就是全局最优解。意味着可以任意选取初始值