使用AnimeGAN2和anime-segmentation生成自己的漫画头像

今天我们来介绍一下怎么利用GAN生成属于的自己的漫画风头像。所需要用的生成模型为AnimeGAN2

AnimeGAN2漫画风生成


使用Huggingface Space的AnimeGAN2 WebUI


网址链接:AnimeGANv2 - a Hugging Face Space by akhaliq

网页界面如下,在左处上传图片,点击提交按钮,等待生成即可:

使用AnimeGAN2和anime-segmentation生成自己的漫画头像_第1张图片
结果:
使用AnimeGAN2和anime-segmentation生成自己的漫画头像_第2张图片


使用AnimeGAN2 源码命令行生成


相关命令行脚本如下,项目依赖pytorch-1.7.0以上版本,注意提前安装

git clone https://github.com/bryandlee/animegan2-pytorch.git

cd animegan2-pytorch

python test.py --output_dir [原照片所在文件夹] /
			   --output_dir [生成结果所在文件夹] /
			   --device [cpu/cuda] /
			   --chekpoint [风格权重,支持:celeba_distill | face_paint_512_v1 | face_paint_512_v2 | paprika] /

结果:
使用AnimeGAN2和anime-segmentation生成自己的漫画头像_第3张图片

注:其实也可以直接在test.py源码里修改相关参数,运行程序生成。

AnimeGAN2 模型生成器源码:

import torch
from torch import nn
import torch.nn.functional as F


class ConvNormLReLU(nn.Sequential):
    def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1, pad_mode="reflect", groups=1, bias=False):
        
        pad_layer = {
            "zero":    nn.ZeroPad2d,
            "same":    nn.ReplicationPad2d,
            "reflect": nn.ReflectionPad2d,
        }
        if pad_mode not in pad_layer:
            raise NotImplementedError
            
        super(ConvNormLReLU, self).__init__(
            pad_layer[pad_mode](padding),
            nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, padding=0, groups=groups, bias=bias),
            nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True),
            nn.LeakyReLU(0.2, inplace=True)
        )


class InvertedResBlock(nn.Module):
    def __init__(self, in_ch, out_ch, expansion_ratio=2):
        super(InvertedResBlock, self).__init__()

        self.use_res_connect = in_ch == out_ch
        bottleneck = int(round(in_ch*expansion_ratio))
        layers = []
        if expansion_ratio != 1:
            layers.append(ConvNormLReLU(in_ch, bottleneck, kernel_size=1, padding=0))
        
        # dw
        layers.append(ConvNormLReLU(bottleneck, bottleneck, groups=bottleneck, bias=True))
        # pw
        layers.append(nn.Conv2d(bottleneck, out_ch, kernel_size=1, padding=0, bias=False))
        layers.append(nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True))

        self.layers = nn.Sequential(*layers)
        
    def forward(self, input):
        out = self.layers(input)
        if self.use_res_connect:
            out = input + out
        return out

    
class Generator(nn.Module):
    def __init__(self, ):
        super().__init__()
        
        self.block_a = nn.Sequential(
            ConvNormLReLU(3,  32, kernel_size=7, padding=3),
            ConvNormLReLU(32, 64, stride=2, padding=(0,1,0,1)),
            ConvNormLReLU(64, 64)
        )
        
        self.block_b = nn.Sequential(
            ConvNormLReLU(64,  128, stride=2, padding=(0,1,0,1)),            
            ConvNormLReLU(128, 128)
        )
        
        self.block_c = nn.Sequential(
            ConvNormLReLU(128, 128),
            InvertedResBlock(128, 256, 2),
            InvertedResBlock(256, 256, 2),
            InvertedResBlock(256, 256, 2),
            InvertedResBlock(256, 256, 2),
            ConvNormLReLU(256, 128),
        )    
        
        self.block_d = nn.Sequential(
            ConvNormLReLU(128, 128),
            ConvNormLReLU(128, 128)
        )

        self.block_e = nn.Sequential(
            ConvNormLReLU(128, 64),
            ConvNormLReLU(64,  64),
            ConvNormLReLU(64,  32, kernel_size=7, padding=3)
        )

        self.out_layer = nn.Sequential(
            nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0, bias=False),
            nn.Tanh()
        )
        
    def forward(self, input, align_corners=True):
        out = self.block_a(input)
        half_size = out.size()[-2:]
        out = self.block_b(out)
        out = self.block_c(out)
        
        if align_corners:
            out = F.interpolate(out, half_size, mode="bilinear", align_corners=True)
        else:
            out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)
        out = self.block_d(out)

        if align_corners:
            out = F.interpolate(out, input.size()[-2:], mode="bilinear", align_corners=True)
        else:
            out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)
        out = self.block_e(out)

        out = self.out_layer(out)
        return out

test.py代码如下:

import os
import argparse

from PIL import Image
import numpy as np

import torch
from torchvision.transforms.functional import to_tensor, to_pil_image

from model import Generator


torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True


def load_image(image_path, x32=False):
    img = Image.open(image_path).convert("RGB")

    if x32:
        def to_32s(x):
            return 256 if x < 256 else x - x % 32
        
        w, h = img.size
        img = img.resize((to_32s(w), to_32s(h)))

    return img


def test(args):
    device = args.device
    
    net = Generator()
    net.load_state_dict(torch.load(args.checkpoint, map_location="cpu"))
    net.to(device).eval()
    print(f"model loaded: {args.checkpoint}")
    
    os.makedirs(args.output_dir, exist_ok=True)

    for image_name in sorted(os.listdir(args.input_dir)):
        if os.path.splitext(image_name)[-1].lower() not in [".jpg", ".png", ".bmp", ".tiff"]:
            continue
            
        image = load_image(os.path.join(args.input_dir, image_name), args.x32)

        with torch.no_grad():
            image = to_tensor(image).unsqueeze(0) * 2 - 1
            out = net(image.to(device), args.upsample_align).cpu()
            out = out.squeeze(0).clip(-1, 1) * 0.5 + 0.5
            out = to_pil_image(out)

        out.save(os.path.join(args.output_dir, image_name))
        print(f"image saved: {image_name}")


if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--checkpoint',
        type=str,
        default='./AIGC/anime/animegan2-pytorch/weights/paprika.pt',
    )
    parser.add_argument(
        '--input_dir', 
        type=str, 
        default='./AIGC/anime/animegan2-pytorch/samples/inputs',
    )
    parser.add_argument(
        '--output_dir', 
        type=str, 
        default='./AIGC/anime/animegan2-pytorch/samples/results',
    )
    parser.add_argument(
        '--device',
        type=str,
        default='cuda:0',
    )
    parser.add_argument(
        '--upsample_align',
        type=bool,
        default=False,
        help="Align corners in decoder upsampling layers"
    )
    parser.add_argument(
        '--x32',
        action="store_true",
        help="Resize images to multiple of 32"
    )
    args = parser.parse_args()
    
    test(args)

anime-segmentation去除漫画背景


使用Huggingface spaces的anime-segmentation WebUI去除漫画背景

Huggingface spaces链接:Anime Remove Background - a Hugging Face Space by skytnt

使用AnimeGAN2和anime-segmentation生成自己的漫画头像_第4张图片
结果:
使用AnimeGAN2和anime-segmentation生成自己的漫画头像_第5张图片


使用anime-segmentation源码进行漫画背景去除


首先下载模型的权重文件,链接如下:skytnt/anime-seg · Hugging Face
然后运行一下脚本(最好提前安装pytorch)

git clone https://github.com/SkyTNT/anime-segmentation.git

cd anime-segmentation

pip install -r requirements.txt

python inference.py --net [网络类型] / # 
					--ckpt [权重路径] / # 
					--data [原图路径] / # 
					--out [结果路径] / # 
					--img-size [模型输入图像的尺寸] / 
					--device [cpu 或者 cuda] /

结果:

使用AnimeGAN2和anime-segmentation生成自己的漫画头像_第6张图片

你可能感兴趣的:(深度学习,#,Huggingface,#,图像生成,人工智能,机器学习,计算机视觉,深度学习,python)