- 目标检测进化史:从R-CNN到YOLOv11,技术的狂飙之路
紫雾凌寒
AI炼金厂#机器学习算法#深度学习深度学习计算机视觉python目标检测YOLOcnn人工智能
一、引言在计算机视觉领域中,目标检测是一项至关重要的任务,它旨在识别图像或视频中感兴趣的目标物体,并确定它们的位置。目标检测技术的应用广泛,涵盖了自动驾驶、安防监控、智能机器人、图像编辑等多个领域。随着深度学习技术的飞速发展,目标检测算法也取得了巨大的突破,从最初的R-CNN到如今的YOLOv11,每一次的技术演进都为该领域带来了新的活力和可能性。回顾目标检测的发展历程,R-CNN作为第一个将深度
- 论文学习3:深度学习增强的光声成像(PAI)的最新进展(综述)
superace7911
基于机器学习的光声图像处理机器学习图像处理
原文链接有空可以细看,这里中列出了文中提到的部分研究结果写作大纲1.引言光声成像(PAI)的介绍,它结合了光学和超声成像的优点,为生物医学成像提供了一种有前景的模态。深度学习(DL)在解决PAI中存在的技术限制(如硬件限制、生物特征信息缺乏等)方面的潜力。2.DL方法的原理介绍DL的子集:监督学习、无监督学习和强化学习。详细说明代表性DL架构:卷积神经网络(CNN)、U-形神经网络(U-Net)和
- 神经网络与深度学习入门:理解ANN、CNN和RNN
shandianfk_com
ChatGPTAI神经网络深度学习cnn
在现代科技日新月异的今天,人工智能已经成为了我们生活中的重要组成部分。无论是智能手机的语音助手,还是推荐系统,背后都有一项核心技术在支撑,那就是神经网络与深度学习。今天,我们就来聊一聊这个听起来高大上的话题,其实它也没那么难懂!什么是神经网络?首先,我们要了解什么是神经网络。神经网络(ArtificialNeuralNetwork,简称ANN)是模拟人脑神经元连接方式的一种算法。它由一层层的“神经
- Python的PyTorch+CNN深度学习技术在人脸识别项目中的应用
mosquito_lover1
python深度学习pytorchcnn
人脸识别技术是一种基于人脸特征进行身份识别的生物识别技术,其核心原理包括人脸检测、人脸对齐、特征提取、特征匹配、身份识别。一、应用场景安防:门禁、监控。金融:刷脸支付、身份验证。社交:自动标注、美颜。医疗:患者身份确认、情绪分析。二、关键技术深度学习:CNN在人脸检测、特征提取中表现优异。大数据:大规模数据集(如LFW、MegaFace)提升模型泛化能力。硬件加速:GPU、TPU等加速计算,提升实
- YOLOv12:以注意力为中心的物体检测
那雨倾城
PiscTraceYOLO机器学习目标检测深度学习图像处理
YOLOv12是YOLO系列中的最新版本,它引入了一种以注意力为中心的架构,旨在进一步提升物体检测的精度和速度。相比以往的YOLO模型,YOLOv12摒弃了传统基于卷积神经网络(CNN)的结构,采用了全新的方法,融合了自注意力机制和高效的网络架构优化,提供了一个高精度、低延迟的实时目标检测模型。1.主要功能YOLOv12在多个关键点进行了优化和创新,以下是它的主要功能:1.1区域注意机制(Regi
- 浅显介绍图像识别的算法卷积神经网络(CNN)中的激活函数
cjl30804
算法cnn人工智能
激活函数的作用激活函数在神经网络中扮演着至关重要的角色,其主要作用包括但不限于以下几点:引入非线性:如果没有激活函数或仅使用线性激活函数,无论神经网络有多少层或多复杂,整个模型仍然只能表达线性映射。这意味着它无法学习和表示数据中的复杂模式。通过使用非线性的激活函数,如ReLU(修正线性单元)、Sigmoid、Tanh等,可以赋予神经网络学习复杂函数的能力。决定神经元是否被激活:激活函数根据输入信号
- 生成对抗网络(GAN):从概念到代码实践(附代码)
全栈你个大西瓜
人工智能计算机视觉人工智能GAN网络对抗学习手势识别生成器与鉴别器生成对抗网络
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- MTCNN 人脸检测技术揭秘:原理、实现与实战(附代码)
全栈你个大西瓜
人工智能计算机视觉人工智能MTCNN人脸检测卷积神经网络
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络(附代码)第五章:计算机视觉:神经网络实战之手势识别(附代码)第六章:计算机视觉:目标检测从简单到容易(附代码)第七章:MTCNN人脸检测技术揭秘:原理、实现与实战(附代码)第八章:探索YOLO技术:目标检测的高
- 神经网络可视化工具
G鲲鹏展翅Y
神经网络人工智能深度学习
借鉴微信公众号:【超实用!】11款神经网络可视化工具,组会汇报、论文插图、科研学术必备01TensorSpace可以在网页上直接使用,是一种3D模型展示神经网络,适合给初学者或者科普的时候展示时使用,非常的直观,并且每一层的卷积层都可以展开,让你更加清晰的观察里面的内部结构地址:http://tensorspace.org02NN-SVG在它的主页上有三种神经网络,一种是FCNN,也就是全连接型的
- End-to-End Object Detection with Transformers
M1kk0
目标检测计算机视觉神经网络
End-to-EndObjectDetectionwithTransformers会议:2020ECCV论文:https://arxiv.org/abs/2005.12872代码:https://github.com/facebookresearch/detr创新点:\作者摒弃了基于anchor、NMS等这种需要手工设计的模块,和R-CNN系列、YOLO系列,以及其他anchor-free的方法都
- ShuffleNet V2(2018 CVPR)
刘若里
论文阅读深度学习人工智能学习计算机视觉笔记
论文标题ShuffleNetV2:PracticalGuidelinesforEfficientCNNArchitectureDesign论文作者NingningMa,XiangyuZhang,Hai-TaoZheng,JianSun发表日期2018年07月01日GB引用>NingningMa,XiangyuZhang,Hai-TaoZheng,etal.ShuffleNetV2:Practica
- 人工智能:从基础到前沿
顾漂亮
人工智能深度学习windows
目录目录1.引言2.人工智能基础2.1什么是人工智能?2.2人工智能的历史2.3人工智能的分类3.机器学习3.1机器学习概述3.2监督学习3.3无监督学习3.4强化学习4.深度学习4.1深度学习概述4.2神经网络基础4.3卷积神经网络(CNN)4.4循环神经网络(RNN)5.自然语言处理(NLP)5.1NLP概述5.2文本预处理5.3词嵌入5.4语言模型6.计算机视觉6.1计算机视觉概述6.2图像
- 人工神经网络ANN入门学习笔记
cs_ning
ANN学习笔记学习笔记机器学习
研究生写论文需要,先快速学习了机器学习的内容,现在需要继续深入学习人工神经网络ANN的内容,以下是个人的学习笔记,欢迎交流、请多多指正!以下是参考的学习资料/网站/笔记来源(侵权删):【ANN回归预测】基于ANN实现多变量预测附Matlab代码_ann实现回归-CSDN博客ANN人工神经网络:从基础认知到现实理解-CSDN博客常用神经网络-ANN/CNN/RNN/GAN/Transformer_a
- Python中常见库 PyTorch和Pydantic 讲解
爱丫爱
pythonpytorch开发语言
PyTorch简介PyTorch是一个开源的深度学习框架,由Facebook的AI研究团队开发。它提供了丰富的工具和库,用于构建和训练各种深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)及其变体(如LSTM、GRU)、生成对抗网络(GAN)等。核心特性动态计算图:PyTorch采用动态计算图,这意味着在运行时可以动态定义和修改计算图,使得模型的构建和调试更加灵活。这与TensorFl
- 基于CNN-LSTM-Attention的回归预测算法(附Tensorflow框架下的代码)
Jason_Orton
算法cnnlstm机器学习数据挖掘回归tensorflow
本代码基于Tensorflow框架,即插即用!!!基于CNN-LSTM-Attention的回归预测算法结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和注意力机制(Attention)三种强大的技术,通常用于时序数据的回归预测问题。这种结合模型能够有效地处理和预测复杂的时序数据,尤其是包含空间和时间信息的任务,如气象预测、股市分析、电力负荷预测等。1.模型概述该模型的核心思想是通过不同网
- VBA连接sql server数据库基本操作
OdooWizard
VBAVBA
不多说,直接看代码'连接数据库'定义数据链接对象,保存连接数据库信息Setcnn=CreateObject("ADODB.Connection")'定义记录集对象,保存数据表Setrs=CreateObject("ADODB.Recordset")'定义数据库链接字符串‘DataSource:数据库服务器IP地址‘InitialCatalog:数据库名称‘UserID:数据库登录用户名‘Passw
- Python:实现 PyTorch 中训练自定义卷积神经网络模型(CNN)并导出模型为 ONNX 格式,同时使用 ONNX Runtime 进行推理
煤炭里de黑猫
pythonpytorchcnn
本文将介绍如何使用PyTorch训练一个简单的卷积神经网络(CNN)模型,并将训练好的模型导出为ONNX格式,之后使用ONNXRuntime在Python中加载并进行推理。在开始使用模型前,需要安装以下Python库。为了提高下载速度,我们将使用国内镜像源进行安装。以下是各个库的安装步骤。1.安装onnxruntimeonnxruntime是用于加载和运行ONNX模型的库。可以通过以下命令使用国内
- 深度学习-123-综述之AI人工智能与DL深度学习简史1956到2024
皮皮冰燃
深度学习人工智能深度学习
文章目录1AI与深度学习的简史1.1人工智能的诞生(1956)1.2早期人工神经网络(1940-1960年代)1.3多层感知器MLP(1960年代)1.4反向传播(1970-1980年代)1.5第二次黑暗时代(1990-2000年代)1.6深度学习的复兴(21世纪末至今)1.6.1CNN卷积神经网络(1980-2010)1.6.2RNN递归神经网络(1986-2017)1.6.3Transform
- 深度学习模型的全面解析:技术进展、应用场景与未来趋势
阿尔法星球
深度学习与神经网络实战机器学习
1.深度学习模型概述1.1深度学习模型的定义与分类深度学习模型是基于人工神经网络的算法,它们通过模仿人脑的处理机制来学习数据中的复杂模式和特征。这些模型可以根据其结构和应用场景被分为不同的类别,包括但不限于卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)、生成对抗网络(GAN)和Transformer模型等。1.2深度学习模型的关键特点深度学习模型的关键特点在于其深度,即
- 基于深度学习的钢材表面缺陷检测系统:UI界面 + R-CNN + 数据集
深度学习&目标检测实战项目
R-CNN检测系统深度学习uir语言开发语言计算机视觉cnn人工智能
在制造业中,钢材表面缺陷的检测是保证产品质量和生产效率的关键环节。随着工业自动化水平的提高,传统的人工检测已经无法满足快速、精确的检测要求。基于深度学习的钢材表面缺陷检测系统能够通过计算机视觉自动识别钢材表面的缺陷类型和位置,极大地提升了检测的准确性和效率。本文将详细介绍如何基于深度学习、R-CNN算法和自定义数据集构建一个钢材表面缺陷检测系统。内容涵盖从数据准备、R-CNN模型训练到UI界面设计
- ssd训练自己的数据集
reset2021
目标检测目标检测python深度学习人工智能pytorch
基于SSD算法实现对自己数据集的训练与检测。(该专题以操作为主)SSD是一种非常优秀的one-stage目标检测方法,one-stage算法就是目标检测和分类是同时完成的,其主要思路是利用CNN提取特征后,均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,物体分类与预测框的回归同时进行,整个过程只需要一步,所以其优势是速度快。这篇文档主要讲述怎样用SSD算法来实现对自己数据集的训
- 前端上传富文本内容给后端,后端接收到的内容有缺失。
sanggou
前端java开发语言
问题情况今天自测时,发现有个问题,传的富文本的string被阉割了,传参是"text":"cnncbbddbbcv",后端接到的是"text":"cnncbbddbbcv"这后面的去哪了呢,根据排查是因为有yml里有防止xss攻击的相关配置解决方法过滤掉一些接口或者对应的字符串#防止XSS攻击xss:#过滤开关enabled:true#排除链接(在过滤链接中,哪些不需要过滤,可使用*通配符,多个用
- Vision Transformer图像分类实现
reset2021
图像分类transformer分类深度学习python
VisionTransformer(ViT)是一种基于Transformer架构的图像分类模型。与传统的卷积神经网络(CNN)不同,ViT将图像分割成多个小块(patches),并将这些小块视为序列输入到Transformer中。以下是使用PyTorch实现VisionTransformer进行图像分类的步骤。1.安装必要的库首先,确保你已经安装了必要的库:pipinstalltorchtorch
- Vision Transformer(ViT):用 Transformer 颠覆图像识别
金外飞176
论文精读transformer深度学习人工智能
VisionTransformer(ViT):用Transformer颠覆图像识别在计算机视觉领域,卷积神经网络(CNN)长期以来一直是图像识别任务的主流架构。然而,近年来,自然语言处理(NLP)领域中大放异彩的Transformer架构也开始在图像识别中崭露头角。今天,我们将深入探讨一种创新的架构——VisionTransformer(ViT),它将Transformer的强大能力直接应用于图像
- Transformer 模型架构
2401_89793006
热门话题transformer深度学习人工智能
Transformer是一种模型架构(ModelArchitecture),而不是一个软件框架(Framework)。它的定位更接近于一种设计蓝图,类似于建筑中的结构设计方案。以下是详细解释:1.架构vs框架的区别概念定义示例模型架构定义神经网络的结构设计Transformer、CNN、RNN开发框架提供实现模型的工具和库PyTorch、TensorFlow2.Transformer作为架构的核心
- 图像识别与应用
狂踹瘸子那条好脚
python
图像识别作为人工智能领域的重要分支,近年来取得了显著进展,其中卷积神经网络(CNN)功不可没。CNN凭借其强大的特征提取能力,在图像分类、目标检测、人脸识别等任务中表现出色,成为图像识别领域的核心技术。一、卷积神经网络:图像识别的利器CNN是一种专门处理网格状数据的深度学习模型,其结构设计灵感来源于生物视觉系统。与全连接神经网络不同,CNN通过卷积层、池化层等结构,能够有效提取图像的局部特征,并逐
- Mamba超绝创新!搭上异常检测准确率99%+!一区秒了!
人工智能学起来
人工智能深度学习
今天给大家推荐一个创新Max,且不卷的idea:基于Mamba做异常检测!以往的异常检测方法,以基于CNN、Transformer为主。但CNN在处理长距离依赖性方面存在困难,Transformer虽然表现出色,但由于其自注意力机制,计算复杂度较高。而Mamba,则完美弥补了这两者的缺陷,在有效处理长距离依赖性同时,具有线性复杂度,计算资源需求少!在提高模型检测精度和速度方面,一骑绝尘!比如模型A
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- 卷积神经网络之AlexNet经典神经网络,实现手写数字0~9识别
知识鱼丸
深度学习神经网络cnn人工智能深度学习AlexNet经典神经网络
深度学习中较为常见的神经网络模型AlexNet,AlexNet是一个采用GPU训练的深层CNN,本质是种LeNet变体。由特征提取层的5个卷积层两个下采样层和分类器中的三个全连接层构成。先看原理:AlexNet网络特点采用ReLU激活函数,使训练速度提升6倍采用dropout层,防止模型过拟合通过平移和翻转的方式对数据进行增强采用LRN局部响应归一化,限制数据大小,防止梯度消失和爆炸。但后续证明批
- 【机器学习】基于3D CNN通过CT图像分类预测肺炎
MUKAMO
AIPython应用机器学习深度学习人工智能神经网络3DCNN
1.引言1.1.研究背景在医学诊断中,医生通过分析CT影像来预测疾病时,面临一些挑战和局限性:图像信息的广度与复杂性:CT扫描生成的大量图像对医生来说既是信息的宝库也是处理上的负担。每组CT数据可能包含数百张切片,医生必须迅速审阅这些图像,以便捕捉到病变的微小细节。这种庞大的信息量要求医生在有限的时间内做出精准诊断,但同时也增加了漏诊或误诊的风险。部分容积效应也可能模糊小病变的边界,使得准确诊断变
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_