- RocketMQ 基础教程-应用篇-死信队列
码炫课堂-码哥
rocketmq专题rocketmqjava
作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬学习必须往深处挖,挖的越深,基础越扎实!阶段1、深入多线程阶段2、深入多线程设计模式阶段3、深入juc源码解析阶段4、深入jdk其余源码解析
- Python 爬虫实战:视频平台播放量实时监控(含反爬对抗与数据趋势预测)
西攻城狮北
python爬虫音视频
一、引言在数字内容蓬勃发展的当下,视频平台的播放量数据已成为内容创作者、营销人员以及行业分析师手中极为关键的情报资源。它不仅能够实时反映内容的受欢迎程度,更能在竞争分析、营销策略制定以及内容优化等方面发挥不可估量的作用。然而,视频平台为了保护自身数据和用户隐私,往往会设置一系列反爬虫机制,对数据爬取行为进行限制。这就向我们发起了挑战:如何巧妙地突破这些限制,同时精准地捕捉并预测播放量的动态变化趋势
- android沙箱逃逸漏洞,【技术分享】沙盒逃逸技术详解(一)
weixin_40004051
android沙箱逃逸漏洞
预估稿费:170RMB投稿方式:发送邮件至linwei#360.cn,或登陆网页版在线投稿写在前面的话在过去的十多年里,针对恶意软件沙盒逃逸技术的分析已经成为了对抗高级持续性威胁的银弹,虽然这种技术变得越来越热门,但是恶意软件的开发者们似乎也找到了一种基于静态分析的方法(例如加密、混淆处理和反逆向保护等技术)来躲避传统反病毒安全工具的检测。因此,针对恶意软件沙盒逃逸技术的分析与研究已经成为了我们抵
- 【osgEarth】在osgEarth中实现的一些模型效果:雷达波、通信链路、爆炸、尾焰、轨迹、文字标牌等
bailang_zhizun
OSGosgEarthQTqtc++
学习osgEarth也有一段时间了,记录一下最近一段时间的学习成果。主要是在osgEarth三维场景中实现了一些模型效果,部分模型参考借鉴了西安恒歌的一些显示效果(当然是不能和他们比的doge),期间也从杨总(freesouths)的一些资料、文章中学到了很多,在此也感谢杨总他们的无私奉献。1、简单的仿真小场景简单的仿真小场景,感兴趣的可以看看。基于osgEarth制作的一个简单的飞机对抗仿真小场
- SPGAN: Siamese projection Generative Adversarial Networks
这张生成的图像能检测吗
优质GAN模型训练自己的数据集人工智能生成对抗网络计算机视觉深度学习神经网络算法
简介简介:该论文针对传统GANs中鉴别器采用硬边际分类导致的误分类问题,提出了基于Siameseprojection网络的SPGAN方法。主要创新点包括:(1)设计Siameseprojection网络来测量特征相似性;(2)提出相似特征对抗学习框架,将相似性测量融入生成器和鉴别器的损失函数;(3)通过相似特征对抗学习,鉴别器能最大化真实图像和生成图像特征的差异性,生成器能合成包含更多真实图像特征
- 网络安全核心技术解析:权限提升(Privilege Escalation)攻防全景
引言在网络安全攻防对抗中,权限提升(PrivilegeEscalation)是攻击链条中关键的「破局点」。攻击者通过突破系统权限壁垒,往往能以有限权限为跳板,最终掌控整个系统控制权。本文将从攻击原理、技术路径、实战案例到防御体系,全方位解析这一网络空间的「钥匙窃取」艺术。一、权限提升的本质与分类1.1核心定义权限提升指攻击者通过技术手段,将当前运行进程或用户的权限等级突破系统预设的访问控制机制,获
- 英语学习笔记2.0
飞升不如收破烂~
学习笔记
✅正确表达:“HowlonghaveyoubeenteachingEnglish?”或者更简单地问:“HowlongdoyouteachEnglish?”(这个句子语法对,但用在现在习惯性的行为上)用法说明:如果你想问:️“你教英语多久了?”✅用现在完成时(表示一段持续的时间):HowlonghaveyoubeenteachingEnglish?️你可以这样试试新的句子:Howlonghaveyo
- 全身动作捕捉系统在人形机器人训练中提供精准数据的重要性
人形机器人作为复杂的移动操作平台,其运动精度直接影响任务执行可靠性。与工业机械臂相比,人形机器人需同时处理浮动基座动力学、多体耦合误差及非结构化环境适应,使得运动学误差分析更具挑战性。传统编程式动作控制已无法满足复杂场景需求,而全身动作捕捉系统通过提供高精度运动数据,成为突破这一瓶颈的关键技术。一、技术原理:从传感器到数字孪生的精准映射1.1动作捕捉系统的技术架构全身动作捕捉系统通常由惯性传感器、
- GNSS+INS:揭秘导航技术中的“黄金组合“奥秘
EriccoShaanxi
技术文章无人机自动驾驶机器人
在导航技术领域,GNSS(全球导航卫星系统)和INS(惯性导航系统)的结合,一直被业界誉为"黄金搭档"。它们优势互补,克服了单一系统的局限性,为高精度、高可靠性的导航提供了完美解决方案。而ER-GNSS/MINS-05低成本组合导航系统的出现,更是让这一"黄金组合"走进了更广泛的应用场景,让高性能导航不再昂贵。GNSS与INS:天生互补的"最佳拍档"GNSS的强项与短板GNSS(如GPS、北斗、G
- 为什么选择ER-GNSS/MINS-07?——低成本高精度的组合导航解决方案
导航技术的痛点:单一系统难以应对复杂环境无论是自动驾驶汽车、无人机巡检,还是精准农业、飞行记录仪,高精度、高可靠的导航都是核心需求。然而,传统导航技术各有短板:卫星导航(GNSS):信号易受遮挡(如城市峡谷、隧道),且易受干扰或欺骗。惯性导航(INS):自主性强,但误差随时间累积,几分钟后定位漂移。多源融合:组合导航的“智慧大脑”组合导航系统(GNSS/INS)通过多源传感器融合,结合卫星导航的长
- 标题:2025传统制造业护网实战指南:从合规防御到智能免疫的体系化进阶
上海云盾商务经理杨杨
网络
引言2025年,随着《工业互联网企业网络安全》三项国家标准全面实施,护网行动已从“合规检查”升级为“能力对抗”。传统制造业在数字化转型浪潮中,面临设备老旧、人才短缺、供应链风险激增等挑战,41.5%的企业计划年内增加安全预算。本文将结合新规要求与行业最佳实践,深度解析传统制造业如何构建“技术-管理-运营”三位一体的护网防御体系。一、传统制造业的护网困境:三大核心矛盾1.设备老旧化vs安全新标准历史
- 【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
1989
0基础学AI人工智能生成对抗网络神经网络python机器学习近邻算法深度学习
本节课你将学到GAN的基本原理和工作机制使用PyTorch构建生成器和判别器DCGAN架构实现技巧训练GAN模型的实用技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtorchvisionmatplotlibnumpyGPU推荐(可大幅加速训练)前置知识第21讲TensorFlow基础第23讲神经网络原理基本PyTorch使用经验核心概念什么是GAN?GAN就像
- 黑客攻防演练之:红队攻击の常见战术及案例
黑客飓风
web安全安全网络
HVV和HW最近大家看到的比较多,一般指的攻防演练。“攻防演练”通常是指在网络安全领域中,通过模拟攻击和防御的对抗过程,来检验和提升系统安全性、人员技能水平以及应对突发事件能力的一种实践性活动。什么是红队攻防演练,也常被称为“网络安全攻防演练”或“红蓝对抗演练”,是一种通过模拟网络攻击和防御过程,来评估和提升网络安全防护能力的实践活动。它广泛应用于网络安全领域,以及军事、企业、政府机构等多个行业,
- 三星半导体重大改变,启动价格战!
iccnewer
在半导体这个拼技术、拼资金、拼时间的赛道上,三星最近做出了一个颇为务实的决定——不再一味追求最先进的工艺,而是把重心转向4-7nm这个"甜蜜区间",用30%的价格优势来对抗台积电的技术领先。三星之前的路线很激进,想要在1.4nm工艺上超越台积电,抢占技术制高点。但现实给了它一记重锤——与英伟达和高通的初步合作评估结果不尽人意,3nm以下工艺虽然良率达到了40%,但大客户的订单却迟迟拿不到手。于是三
- AIGC领域AI作画:在数字雕塑中的应用实践
AI原生应用开发
AI原生应用开发AIGCAI作画ai
AIGC领域AI作画:在数字雕塑中的应用实践关键词:AIGC、AI作画、数字雕塑、生成对抗网络、3D建模、艺术创作、深度学习摘要:本文深入探讨了AIGC(人工智能生成内容)技术在数字雕塑领域的创新应用。我们将从技术原理、算法实现到实际案例,全面解析AI如何赋能传统数字雕塑创作流程。文章首先介绍AIGC在艺术创作中的背景和发展现状,然后详细讲解核心算法原理和数学模型,接着通过实际项目案例展示AI作画
- AIGC空间智能在服装设计领域的颠覆性变革
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶AIGCai
AIGC空间智能在服装设计领域的颠覆性变革关键词:AIGC、空间智能、服装设计、数字孪生、生成式AI、3D人体建模、智能设计系统摘要:本文深入探讨AIGC(人工智能生成内容)与空间智能技术在服装设计领域的融合创新,揭示其如何通过三维人体建模、场景模拟、智能生成算法重构传统设计流程。从技术原理层解析空间智能的核心模块,结合生成对抗网络(GAN)、Transformer模型等前沿算法,展示从创意生成到
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- 生成式人工智能实战 | 条件生成对抗网络(conditional Generative Adversarial Network, cGAN)
盼小辉丶
生成对抗网络神经网络深度学习生成式人工智能pytorch
生成式人工智能实战|条件生成对抗网络0.前言1.条件生成对抗网络1.1GAN基础回顾1.2cGAN核心思想2.cGAN网络架构2.1数学原理2.2网络架构3.实现cGAN3.1环境准备与数据加载3.2模型构建3.3模型训练0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来深度学习领域最具突破性的技术之一,能够生成逼真的图像、音频甚至文本。然而,传统的G
- [创业之路-484]:企业经营层 - 职场人如何识别积极的工作环境:信任机制:从「分工协作」到「全能防御」;目标聚焦:从「价值创造」到「风险规避」;系统进化:从「熵减秩序」到「熵增混乱」。
前言:在一个分工明确安全可靠公平化的系统中,每个人只需要认真完成自己的目标,把其他环节交给受信任的队友,技术人只要关注技术,不需要防范被别人算计和坑害或吃亏。在一个不可靠不安全人治危机四伏的系统中,每个人不仅需要完成自己的目标,还需要把自己变成全才,以避免自己的付出在脱节的环节被淹没,还要关注各种无关的隐情,以避免在信息不对称时别忽悠,技术人员不仅仅要关注技术,还要人事,以防止一不小心暗算与坑害。
- Apple Sensor-Fusion 架构全解析:多模态语义图像感知系统设计与实战路径
观熵
影像技术全景图谱:架构调优与实战架构影像Camera
AppleSensor-Fusion架构全解析:多模态语义图像感知系统设计与实战路径关键词:AppleA系列、SensorFusion、语义图像感知、IMU+Camera协同、图像识别、ARKit、视觉惯性融合、多模态协同计算、CoreMotion、ISP语义路径摘要:Apple自A13及其后续SoC架构中,持续深化Sensor-Fusion与图像语义感知的协同设计,构建出以ISP、NPU、IMU
- Python训练营打卡 Day53
yunvwugua__
python自学打卡python开发语言
对抗生成网络知识点回顾:对抗生成网络的思想:关注损失从何而来生成器、判别器nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法leakyReLU介绍:避免relu的神经元失活现象对抗生成网络(GAN)知识点回顾对抗生成网络的思想思想:就像在餐厅中,有一个厨师(生成器)负责制作假菜,一个评论家(判别器)负责区分真菜和假菜。厨师的目标是制作出评论家无法区分的假菜,而评论家的目标是找
- 231转序和321转序的姿态角与四元数的变换关系(文末附VC++代码和Matlab验证代码)
小亨GNC颐园
matlabVC++运载火箭321转序231转序导弹导航初始化
近程战术导弹的转序一般采用231的顺序,先偏航、后俯仰、再滚转。远程导弹、运载火箭、某些垂直发射拦截导弹的初制导段会采用321的转序,先俯仰、后偏航、再滚转。这两种转下的姿态角与四元数的转换关系如下:321转序//--------惯性坐标系到箭体系的四元数--------------------//doublesic_T=sin(Theta_T_rad/2.0);余下的VC++代码和Matlab代
- 攻防对抗的工作原理和架构
hao_wujing
安全
大家读完觉得有帮助记得关注和点赞!!!**攻防对抗(CyberKillChainDefense)**是网络安全领域的动态博弈过程,攻击方通过**入侵链**突破防御,防御方则构建**纵深的检测响应体系**进行拦截反制。其本质是**攻击成本与防御效能的持续对抗升级**。以下从工作原理到架构的深度解析:---###一、攻防对抗核心工作原理####**攻击链(CyberKillChain)vs防御链(De
- 机器人动力学模型及其线性化阻抗控制模型
机器人动力学模型机器人动力学模型描述了机器人的运动与所受力和力矩之间的关系。这个模型考虑了机器人的质量、惯性、关节摩擦、重力等多种因素,用于预测和解释机器人在给定输入下的动态行为。动力学模型是设计机器人控制器的基础,它可以帮助我们理解机器人如何响应控制指令,并优化机器人的运动性能。具体来说,机器人动力学模型通常由一组微分方程组成,这些方程描述了机器人各关节的加速度、速度和位置与施加在关节上的力和力
- 深度学习相关指标工作笔记
Victor Zhong
AI框架深度学习笔记人工智能
这里写目录标题检测指标iou/Gou/Diou/CiouMSE(MeanSquaredError)(均方误差)(回归问题)交叉熵损失函数(CrossEntropyErrorFunction)(分类问题)检测指标iou/Gou/Diou/CiouIntersectionoverUnion(IoU)是目标检测里一种重要的评价值交并比令人遗憾的是IoU无法优化无重叠的bboxes如果用IoU作为loss
- 性能更优越的国产替代电源模块 —— GC4644N
上海宸屿电子
嵌入式硬件
近期印巴冲突再度升级,这场自1971年以来最严重的军事对抗在2025年5月全面爆发,印度与巴基斯坦在克什米尔地区展开激烈交火。这场冲突不仅搅动南亚地缘格局,更意外成为中国高科技装备的实战检验场——中国援巴战机搭载的新型雷达系统凭借卓越性能,使导弹精准度与射程大幅提升,令印度空军措手不及。在此背景下,雷达系统的供电稳定性成为决定战场胜负的关键要素。作为雷达系统的"动力心脏",电源管理模块的性能直接影
- 游戏开发引擎安全评估指南:10款主流工具防御能力深度解析
李詹
网络
Unity、UnrealEngine等10款主流游戏开发软件的安全防护机制,揭示其对抗DDoS攻击、数据泄露等网络威胁的核心能力。基于NIST网络安全框架与OWASP标准,构建覆盖开发环境安全、实时通信加密、云服务防护的三维评估体系,为游戏开发者提供兼顾功能与安全的技术选型指南。游戏开发环境的安全基线构建开发工具链的完整性验证是安全基线的第一道防线。Unity的PackageManager采用SH
- 后端密码加密:守护用户数据的钢铁长城
“系统被拖库了!”这可能是开发者最恐惧的噩梦。而当用户密码以明文暴露时,灾难将席卷每个用户——密码重用的惯性会让黑客轻松攻破他们在其他平台的账户。作为后端开发者,我们握有守护用户安全的第一道钥匙:科学的密码存储策略。血的教训:密码存储的三大禁忌❌明文存储--致命操作!永远不要这样做!INSERTINTOusers(username,password)VALUES('alice','P@ssw0rd
- 深度探索:机器学习中的 条件生成对抗网络(Conditional GAN, CGAN)算法原理及其应用
目录1.引言与背景2.CGAN定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景生成对抗网络(GenerativeAdversarialNetworks,GANs)作为一种深度学习框架,在无监督学习领域展现出强大的能力,特别在图像、音频、文本等复杂数据的生成任务中取得了显著成果。然而,原始GAN模型在生成过程中缺乏对生成样本特定属性的直
- PyTorch实战(13)——WGAN详解与实现
盼小辉丶
pytorch人工智能python
PyTorch实战(13)——WGAN详解与实现0.前言1.WGAN与梯度惩罚2.WGAN工作原理2.1Wasserstein损失2.2Lipschitz约束2.3强制Lipschitz约束3.实现WGAN3.1数据加载与处理3.2模型构建3.3模型训练小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)模型训练过程通常会面临一些问题,如模式崩溃(生
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理