残差网络实现

代码中涉及的图片实验数据下载地址:https://download.csdn.net/download/m0_37567738/88235543?spm=1001.2014.3001.5501

代码:

import torch
import torch.nn as nn
import torch.nn.functional as F
#from utils import load_data,get_accur,train
import time


import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
import torch
import torch.optim as optim
import numpy as np


def load_data(path, batch_size):
    datasets = torchvision.datasets.ImageFolder(
        root = path,
        transform = transforms.Compose([
            transforms.ToTensor()
        ])
    )

    dataloder = DataLoader(datasets, batch_size=batch_size, shuffle=True)
    return datasets,dataloder

def get_accur(preds, labels):
    preds = preds.argmax(dim=1)
    return torch.sum(preds == labels).item()

def train(model, epochs, learning_rate, dataloader, criterion, testdataloader):
    optimizer = optim.Adam(model.parameters(),lr=learning_rate)

    train_loss_list = []
    test_loss_list = []
    train_accur_list = []
    test_accur_list = []
    train_len = len(dataloader.dataset)
    test_len = len(testdataloader.dataset)

    for i in range(epochs):
        train_loss = 0.0
        train_accur = 0
        test_loss = 0.0
        test_accur = 0
        for batch in dataloader:
            imgs, labels = batch
            preds = model(imgs)
            optimizer.zero_grad()
            loss = criterion(preds, labels)

            loss.backward()
            optimizer.step()
            train_loss += loss.item()
            train_accur += get_accur(preds,labels)

        train_loss_list.append(train_loss)
        train_accur_list.append(train_accur / train_len)

        for batch in testdataloader:
            imgs, labels = batch
            preds = model(imgs)
            loss = criterion(preds, labels)
            test_loss += loss.item()
            test_accur += get_accur(preds,labels)

        test_loss_list.append(test_loss)
        test_accur_list.append(test_accur / test_len)

        print("epoch {} : train_loss : {}; train_accur : {}".format(i + 1, train_loss, train_accur / train_len))

    return np.array(train_accur_list), np.array(train_loss_list), np.array(test_accur_list), np.array(test_loss_list)

class ResidualBlock(nn.Module):
    
    def __init__(self, inchannel, outchannel, stride=1):
        
        super().__init__()
        
        self.left = nn.Sequential(
            nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),

            nn.BatchNorm2d(outchannel),
            nn.ReLU(inplace=True),
            nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1,padding=1, bias=False),
            # 尺寸不发生变化 通道改变
            nn.BatchNorm2d(outchannel)
        )
        
        self.shortcut = nn.Sequential()
        # 注意shortcut是对输入X进行卷积,利用1×1卷积改变形状
        if inchannel != outchannel or stride != 1:
            self.shortcut = nn.Sequential(nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(outchannel))

    def forward(self, X):
        h = self.left(X)
        # 先相加再激活
        h += self.shortcut(X)
        out = F.relu(h)
        return out


class ResidualNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.residual_block = nn.Sequential(
            ResidualBlock(3, 32),
            ResidualBlock(32, 64),
            ResidualBlock(64, 32),
            ResidualBlock(32, 3)
        )
        self.fc1 = nn.Linear(3 * 64 * 64, 1024)
        self.fc2 = nn.Linear(1024, 3)

    def forward(self, X):
        h = self.residual_block(X)
        h = h.view(-1, 3 * 64 * 64)
        h = self.fc1(h)
        out = self.fc2(h)
        return out

if __name__ == "__main__":
    train_path = "./cnn/train/"
    test_path = "./cnn/test/"
    _, train_dataloader = load_data(train_path, 32)
    _, test_dataloader = load_data(test_path, 32)
    model = ResidualNet()
    critic = nn.CrossEntropyLoss()
    epoch = 20
    lr = 0.01
    start = time.clock()
    print("Start training model.....")
    train_accur_list, train_loss_list, test_accur_list, test_loss_list = train(model, epoch, lr, train_dataloader,
                                                                               critic, test_dataloader)
    end = time.clock()
    print("Train cost: {} s".format(end - start))
    test_accur = 0
    for batch in test_dataloader:
        imgs, labels = batch
        preds = model(imgs)
        test_accur += get_accur(preds, labels)

    print("Accuracy on test datasets : {}".format(test_accur / len(test_dataloader.dataset)))

执行结果:

残差网络实现_第1张图片

你可能感兴趣的:(强化学习,机器学习,深度学习)