AMBA APB总线——AHB到APB总线转换桥实现

文章目录

  • 前言
  • 一、APB总线接口
  • 二、APB总线时序图
    • 1.写传输
    • 2.读传输
  • 三、AHB总线到APB总线转换桥


前言

前面分析了AHB总线协议。接下来分析APB总线协议。


一、APB总线接口

PCLK APB总线时钟。

PRESETn APB总线复位。低有效。

PADDR 地址总线。

PSELx 从设备选择。

PENABLE APB传输选通。

PWRITE 高为写传输,低为读。

PRDATA 读数据总线。

PWDATA 写数据总线。

接口信号定义如下:

interface   apb_slv_intf #(
    parameter   AW  = 32,
                DW  = 32
) (
    input   logic       PCLK,
    input   logic       PRESETn
);
    logic               PSEL;
    logic               PENABLE;
    logic   [AW-1:0]    PADDR;
    logic               PWRITE;
    logic   [DW-1:0]    PWDATA;

    logic   [DW-1:0]    PRDATA;


    modport m (
        input   PRDATA,
        output  PSEL, PENABLE, PADDR, PWRITE, PWDATA
    );

    modport s (
        input   PSEL, PENABLE, PADDR, PWRITE, PWDATA,
        output  PRDATA
    );

endinterface: apb_slv_intf

二、APB总线时序图

1.写传输

AMBA APB总线——AHB到APB总线转换桥实现_第1张图片

2.读传输

AMBA APB总线——AHB到APB总线转换桥实现_第2张图片
  注意在PENABLE信号有效后从设备需要给出有效数据/读取有效数据。


三、AHB总线到APB总线转换桥

module ahb2apb_bridge #(
    parameter   AHB_AW  = 32,
                AHB_DW  = 32,
                APB_AW  = 32,
                APB_DW  = 32,
                NSLV    = 16
) (
    input   logic   HCLK,
    input   logic   HRESETn,
    input   logic   PCLK,
    input   logic   PRESETn,
    ahb_slv_intf.s  ahb,
    apb_slv_intf.m  apbv[NSLV]
);

    logic   ahb_work;
    logic   apb_work;

    genvar  i;

    typedef enum logic [1:0] {
        AHB_IDLE    = 2'b00,
        AHB_WRITE   = 2'b01,
        AHB_READ    = 2'b10,
        AHB_WAIT    = 2'b11
    } ahb_state_e;

    // Signal of AHB Domain
    struct {
        logic                   work;
        logic   [AHB_AW-1:0]    addr;
        logic   [AHB_DW-1:0]    data;
        logic                   write;
        ahb_state_e             cstate, nstate;
    } ahbd;

    typedef enum logic [1:0] {
        APB_IDLE    = 2'b00,
        APB_WRITE   = 2'b01,
        APB_READ    = 2'b10
    } apb_state_e;

    // Signal of APB Domain
    struct {
        logic                   work;
        logic   [APB_DW-1:0]    data[NSLV];
        logic                   PSEL[NSLV];
        logic                   PENABLE[NSLV];
        apb_state_e             cstate, nstate;
    } apbd;


    // AHB Control Logic
    always_comb begin
        case (ahbd.cstate)
            AHB_IDLE: begin
                if (ahb.HSEL && ahb.HTRANS == HTRANS_NONSEQ) begin
                    if (ahb.HWRITE)
                        ahbd.nstate = AHB_WRITE;
                    else
                        ahbd.nstate = AHB_READ;
                end
                else
                    ahbd.nstate = AHB_IDLE;
            end
            AHB_WRITE: begin
                if (apbd.work)
                    ahbd.nstate = AHB_WAIT;
                else
                    ahbd.nstate = AHB_WRITE;
            end
            AHB_READ: begin
                if (apbd.work)
                    ahbd.nstate = AHB_WAIT;
                else
                    ahbd.nstate = AHB_READ;
            end
            AHB_WAIT: begin
                if (!apbd.work)
                    ahbd.nstate = AHB_IDLE;
                else
                    ahbd.nstate = AHB_WAIT;
            end
            default: ahbd.nstate = AHB_IDLE;
        endcase
    end

    always_ff @(posedge HCLK or negedge HRESETn) begin
        if (!HRESETn)
            ahbd.cstate <= AHB_IDLE;
        else
            ahbd.cstate <= ahbd.nstate;
    end

    always_ff @(posedge HCLK or negedge HRESETn) begin
        if (!HRESETn) begin
            ahbd.work   <= 1'b0;
            ahbd.addr   <= '0;
            ahbd.data   <= '0;
            ahbd.write  <= 1'b0;
            ahb.HREADY  <= 1'b1;
            ahb.HRDATA[APB_DW-1:0]  <= '0;
        end
        else begin
            case (ahbd.cstate)
                AHB_IDLE: begin
                    if (ahb.HSEL && ahb.HTRANS == HTRANS_NONSEQ) begin
                        ahbd.addr   <= ahb.HADDR;
                        ahbd.write  <= ahb.HWRITE;
                        ahb.HREADY  <= 1'b0;
                    end
                    else begin
                        ahbd.addr   <= '0;
                        ahbd.write  <= 1'b0;
                        ahb.HREADY  <= 1'b1;
                    end
                    ahbd.work   <= 1'b0;
                    ahbd.data   <= '0;
                    ahb.HRDATA[APB_DW-1:0]  <= apbd.data[ahbd.addr[AHB_AW-5:AHB_AW-8]];
                end
                AHB_WRITE: begin
                    ahb.HREADY  <= 1'b0;
                    ahbd.work   <= 1'b1;
                    ahbd.data   <= ahb.HWDATA;
                    ahb.HRDATA[APB_DW-1:0]  <= '0;
                end
                AHB_READ: begin
                    ahbd.work   <= 1'b1;
                    ahbd.data   <= '0;
                    ahb.HREADY  <= 1'b0;
                    ahb.HRDATA[APB_DW-1:0]  <= '0;
                end
                AHB_WAIT: begin
                    ahbd.work   <= 1'b0;
                    ahb.HREADY  <= 1'b0;
                    ahb.HRDATA[APB_DW-1:0]  <= '0;
                end
            endcase
        end
    end

    assign  ahb.HRESP = HRESP_OKAY;
    // assign  ahb.HRDATA[AHB_DW-1:APB_DW] = '0;


    // APB Control Logic
    always_comb begin
        case (apbd.cstate)
            APB_IDLE: begin
                if (ahbd.work) begin
                    if (ahbd.write)
                        apbd.nstate = APB_WRITE;
                    else
                        apbd.nstate = APB_READ;
                end
                else
                    apbd.nstate = APB_IDLE;
            end
            APB_WRITE:  apbd.nstate = APB_IDLE;
            APB_READ:   apbd.nstate = APB_IDLE;
            default:    apbd.nstate = APB_IDLE;
        endcase
    end

    always_ff @(posedge PCLK or negedge PRESETn) begin
        if (!PRESETn)
            apbd.cstate <= APB_IDLE;
        else
            apbd.cstate <= apbd.nstate;
    end

    always_ff @(posedge PCLK or negedge PRESETn) begin
        if (!PRESETn) begin
            apbd.work   <= 1'b0;
            for (int j = 0; j < NSLV; j++) begin
                apbd.PSEL[j]    <= 1'b0;
                apbd.PENABLE[j] <= 1'b0;
            end
        end
        else begin
            case (apbd.cstate)
                APB_IDLE: begin
                    if (ahbd.work) begin
                        apbd.work <= 1'b1;
                        for (int j = 0; j < NSLV; j++)
                            apbd.PSEL[j] <= (ahbd.addr[AHB_AW-5:AHB_AW-8] == j) ? 1'b1 : 1'b0;
                    end
                    else begin
                        apbd.work <= 1'b0;
                        for (int j = 0; j < NSLV; j++)
                            apbd.PSEL[j] <= 1'b0;
                    end
                    for (int j = 0; j < NSLV; j++)
                        apbd.PENABLE[j] <= 1'b0;
                end
                APB_WRITE: begin
                    apbd.work <= 1'b1;
                    for (int j = 0; j < NSLV; j++)
                        apbd.PENABLE[j] <= (ahbd.addr[AHB_AW-5:AHB_AW-8] == j) ? 1'b1 : 1'b0;
                end
                APB_READ: begin
                    apbd.work <= 1'b1;
                    for (int j = 0; j < NSLV; j++)
                        apbd.PENABLE[j] <= (ahbd.addr[AHB_AW-5:AHB_AW-8] == j) ? 1'b1 : 1'b0;
                end
            endcase
        end
    end

    generate
        for (i = 0; i < NSLV; i++) begin: apbv_loop
            assign apbv[i].PADDR    = {4'h0, ahbd.addr[APB_AW-4-1:0]};
            assign apbv[i].PWRITE   = ahbd.write;
            assign apbv[i].PWDATA   = ahbd.data[APB_DW-1:0];
            assign apbd.data[i]     = apbv[i].PRDATA;
            assign apbv[i].PSEL     = apbd.PSEL[i];
            assign apbv[i].PENABLE  = apbd.PENABLE[i];
        end
    endgenerate

endmodule: ahb2apb_bridge

转载自:https://www.cnblogs.com/lyuyangly/p/4853921.html

你可能感兴趣的:(AMBA,硬件工程,芯片,verilog,systemverilog,intel)