杜老师推出的 tensorRT从零起步高性能部署 课程,之前有看过一遍,但是没有做笔记,很多东西也忘了。这次重新撸一遍,顺便记记笔记。
本次课程学习 tensorRT 高级-tensor封装,索引计算,内存标记及自动复制
课程大纲可看下面的思维导图
这节我们学习 tensor 的封装,张量是 CNN 中常见的基本单元,尤其是计算偏移量的工作需要封装,其次是内存的复制、分配需要引用 memory 进行封装,避免使用时面对指针不好管控
Tensor 封装主要考虑以下几点:
1. Tensor 的封装是针对输入与输出的,使得对输入或输出的操作更加的便捷
2. Tensor 内部的内存管理则是对 MixMemory 进行了包装
3. Tensor 封装所考虑的,是便于访问,因此有 offset 函数,实现索引的计算
在看代码之前,我们先把握下 tensor 封装的四个重点:
1. 内存的管理,可以使用 MixMemory 解决
2. 内存的复用,依然可以用 MixMemory 解决
3. 内存的 copy,比如说 cpu → \rightarrow → gpu,gpu → \rightarrow → cpu
4. 索引的计算,比如说,我有 5d tensor(B,D,C,H,W),此时我要获取 B = 1,D = 3,C = 0,H = 5,W = 9 的位置元素属于非常基础且非常频繁的一个能力
了解完重点之后,我们再来看代码:
trt-tensor.hpp
#ifndef TRT_TENSOR_HPP
#define TRT_TENSOR_HPP
#include
#include
#include
#include
#include
#include "mix-memory.hpp"
struct CUstream_st;
typedef CUstream_st CUStreamRaw;
typedef CUStreamRaw* CUStream;
namespace TRT{
enum class DataHead : int{
Init = 0,
Device = 1,
Host = 2
};
enum class DataType : int {
Float = 0,
Float16 = 1,
Int32 = 2,
UInt8 = 3
};
int data_type_size(DataType dt);
const char* data_head_string(DataHead dh);
const char* data_type_string(DataType dt);
class Tensor {
public:
Tensor(const Tensor& other) = delete;
Tensor& operator = (const Tensor& other) = delete;
explicit Tensor(DataType dtype = DataType::Float, std::shared_ptr<MixMemory> data = nullptr, int device_id = CURRENT_DEVICE_ID);
explicit Tensor(int n, int c, int h, int w, DataType dtype = DataType::Float, std::shared_ptr<MixMemory> data = nullptr, int device_id = CURRENT_DEVICE_ID);
explicit Tensor(int ndims, const int* dims, DataType dtype = DataType::Float, std::shared_ptr<MixMemory> data = nullptr, int device_id = CURRENT_DEVICE_ID);
explicit Tensor(const std::vector<int>& dims, DataType dtype = DataType::Float, std::shared_ptr<MixMemory> data = nullptr, int device_id = CURRENT_DEVICE_ID);
virtual ~Tensor();
int numel() const;
inline int ndims() const{return shape_.size();}
inline int size(int index) const{return shape_[index];}
inline int shape(int index) const{return shape_[index];}
inline int batch() const{return shape_[0];}
inline int channel() const{return shape_[1];}
inline int height() const{return shape_[2];}
inline int width() const{return shape_[3];}
inline DataType type() const { return dtype_; }
inline const std::vector<int>& dims() const { return shape_; }
inline const std::vector<size_t>& strides() const {return strides_;}
inline int bytes() const { return bytes_; }
inline int bytes(int start_axis) const { return count(start_axis) * element_size(); }
inline int element_size() const { return data_type_size(dtype_); }
inline DataHead head() const { return head_; }
std::shared_ptr<Tensor> clone() const;
Tensor& release();
Tensor& set_to(float value);
bool empty() const;
template<typename ... _Args>
int offset(int index, _Args ... index_args) const{
const int index_array[] = {index, index_args...};
return offset_array(sizeof...(index_args) + 1, index_array);
}
int offset_array(const std::vector<int>& index) const;
int offset_array(size_t size, const int* index_array) const;
template<typename ... _Args>
Tensor& resize(int dim_size, _Args ... dim_size_args){
const int dim_size_array[] = {dim_size, dim_size_args...};
return resize(sizeof...(dim_size_args) + 1, dim_size_array);
}
Tensor& resize(int ndims, const int* dims);
Tensor& resize(const std::vector<int>& dims);
Tensor& resize_single_dim(int idim, int size);
int count(int start_axis = 0) const;
int device() const{return device_id_;}
Tensor& to_gpu(bool copy=true);
Tensor& to_cpu(bool copy=true);
inline void* cpu() const { ((Tensor*)this)->to_cpu(); return data_->cpu(); }
inline void* gpu() const { ((Tensor*)this)->to_gpu(); return data_->gpu(); }
template<typename DType> inline const DType* cpu() const { return (DType*)cpu(); }
template<typename DType> inline DType* cpu() { return (DType*)cpu(); }
template<typename DType, typename ... _Args>
inline DType* cpu(int i, _Args&& ... args) { return cpu<DType>() + offset(i, args...); }
template<typename DType> inline const DType* gpu() const { return (DType*)gpu(); }
template<typename DType> inline DType* gpu() { return (DType*)gpu(); }
template<typename DType, typename ... _Args>
inline DType* gpu(int i, _Args&& ... args) { return gpu<DType>() + offset(i, args...); }
template<typename DType, typename ... _Args>
inline DType& at(int i, _Args&& ... args) { return *(cpu<DType>() + offset(i, args...)); }
std::shared_ptr<MixMemory> get_data() const {return data_;}
std::shared_ptr<MixMemory> get_workspace() const {return workspace_;}
Tensor& set_workspace(std::shared_ptr<MixMemory> workspace) {workspace_ = workspace; return *this;}
bool is_stream_owner() const {return stream_owner_;}
CUStream get_stream() const{return stream_;}
Tensor& set_stream(CUStream stream, bool owner=false){stream_ = stream; stream_owner_ = owner; return *this;}
Tensor& set_mat (int n, const cv::Mat& image);
Tensor& set_norm_mat(int n, const cv::Mat& image, float mean[3], float std[3]);
cv::Mat at_mat(int n = 0, int c = 0) { return cv::Mat(height(), width(), CV_32F, cpu<float>(n, c)); }
Tensor& synchronize();
const char* shape_string() const{return shape_string_;}
const char* descriptor() const;
Tensor& copy_from_gpu(size_t offset, const void* src, size_t num_element, int device_id = CURRENT_DEVICE_ID);
Tensor& copy_from_cpu(size_t offset, const void* src, size_t num_element);
void reference_data(const std::vector<int>& shape, void* cpu_data, size_t cpu_size, void* gpu_data, size_t gpu_size, DataType dtype);
/**
# 以下代码是python中加载Tensor
import numpy as np
def load_tensor(file):
with open(file, "rb") as f:
binary_data = f.read()
magic_number, ndims, dtype = np.frombuffer(binary_data, np.uint32, count=3, offset=0)
assert magic_number == 0xFCCFE2E2, f"{file} not a tensor file."
dims = np.frombuffer(binary_data, np.uint32, count=ndims, offset=3 * 4)
if dtype == 0:
np_dtype = np.float32
elif dtype == 1:
np_dtype = np.float16
else:
assert False, f"Unsupport dtype = {dtype}, can not convert to numpy dtype"
return np.frombuffer(binary_data, np_dtype, offset=(ndims + 3) * 4).reshape(*dims)
**/
bool save_to_file(const std::string& file) const;
bool load_from_file(const std::string& file);
private:
Tensor& compute_shape_string();
Tensor& adajust_memory_by_update_dims_or_type();
void setup_data(std::shared_ptr<MixMemory> data);
private:
std::vector<int> shape_;
std::vector<size_t> strides_;
size_t bytes_ = 0;
DataHead head_ = DataHead::Init;
DataType dtype_ = DataType::Float;
CUStream stream_ = nullptr;
bool stream_owner_ = false;
int device_id_ = 0;
char shape_string_[100];
char descriptor_string_[100];
std::shared_ptr<MixMemory> data_;
std::shared_ptr<MixMemory> workspace_;
};
}; // namespace TRT
#endif // TRT_TENSOR_HPP
trt-tensor.cpp
#include "trt-tensor.hpp"
#include
#include
#include "cuda-tools.hpp"
#include "simple-logger.hpp"
using namespace cv;
using namespace std;
namespace TRT{
int data_type_size(DataType dt){
switch (dt) {
case DataType::Float: return sizeof(float);
case DataType::Int32: return sizeof(int);
case DataType::UInt8: return sizeof(uint8_t);
default: {
INFOE("Not support dtype: %d", dt);
return -1;
}
}
}
inline static int get_device(int device_id){
if(device_id != CURRENT_DEVICE_ID){
CUDATools::check_device_id(device_id);
return device_id;
}
checkRuntime(cudaGetDevice(&device_id));
return device_id;
}
const char* data_head_string(DataHead dh){
switch(dh){
case DataHead::Init: return "Init";
case DataHead::Device: return "Device";
case DataHead::Host: return "Host";
default: return "Unknow";
}
}
const char* data_type_string(DataType dt){
switch(dt){
case DataType::Float: return "Float32";
case DataType::Float16: return "Float16";
case DataType::Int32: return "Int32";
case DataType::UInt8: return "UInt8";
default: return "Unknow";
}
}
Tensor::Tensor(int n, int c, int h, int w, DataType dtype, shared_ptr<MixMemory> data, int device_id) {
this->dtype_ = dtype;
this->device_id_ = get_device(device_id);
descriptor_string_[0] = 0;
setup_data(data);
resize(n, c, h, w);
}
Tensor::Tensor(const std::vector<int>& dims, DataType dtype, shared_ptr<MixMemory> data, int device_id){
this->dtype_ = dtype;
this->device_id_ = get_device(device_id);
descriptor_string_[0] = 0;
setup_data(data);
resize(dims);
}
Tensor::Tensor(int ndims, const int* dims, DataType dtype, shared_ptr<MixMemory> data, int device_id) {
this->dtype_ = dtype;
this->device_id_ = get_device(device_id);
descriptor_string_[0] = 0;
setup_data(data);
resize(ndims, dims);
}
Tensor::Tensor(DataType dtype, shared_ptr<MixMemory> data, int device_id){
shape_string_[0] = 0;
descriptor_string_[0] = 0;
this->device_id_ = get_device(device_id);
dtype_ = dtype;
setup_data(data);
}
Tensor::~Tensor() {
release();
}
const char* Tensor::descriptor() const{
char* descriptor_ptr = (char*)descriptor_string_;
int device_id = device();
snprintf(descriptor_ptr, sizeof(descriptor_string_),
"Tensor:%p, %s, %s, CUDA:%d",
data_.get(),
data_type_string(dtype_),
shape_string_,
device_id
);
return descriptor_ptr;
}
Tensor& Tensor::compute_shape_string(){
// clean string
shape_string_[0] = 0;
char* buffer = shape_string_;
size_t buffer_size = sizeof(shape_string_);
for(int i = 0; i < shape_.size(); ++i){
int size = 0;
if(i < shape_.size() - 1)
size = snprintf(buffer, buffer_size, "%d x ", shape_[i]);
else
size = snprintf(buffer, buffer_size, "%d", shape_[i]);
buffer += size;
buffer_size -= size;
}
return *this;
}
void Tensor::reference_data(const vector<int>& shape, void* cpu_data, size_t cpu_size, void* gpu_data, size_t gpu_size, DataType dtype){
dtype_ = dtype;
data_->reference_data(cpu_data, cpu_size, gpu_data, gpu_size);
setup_data(data_);
resize(shape);
}
void Tensor::setup_data(shared_ptr<MixMemory> data){
data_ = data;
if(data_ == nullptr){
data_ = make_shared<MixMemory>(device_id_);
}else{
device_id_ = data_->device_id();
}
head_ = DataHead::Init;
if(data_->cpu()){
head_ = DataHead::Host;
}
if(data_->gpu()){
head_ = DataHead::Device;
}
}
shared_ptr<Tensor> Tensor::clone() const{
auto new_tensor = make_shared<Tensor>(shape_, dtype_);
if(head_ == DataHead::Init)
return new_tensor;
if(head_ == DataHead::Host){
memcpy(new_tensor->cpu(), this->cpu(), this->bytes_);
}else if(head_ == DataHead::Device){
CUDATools::AutoDevice auto_device_exchange(device());
checkRuntime(cudaMemcpyAsync(new_tensor->gpu(), this->gpu(), bytes_, cudaMemcpyDeviceToDevice, stream_));
}
return new_tensor;
}
Tensor& Tensor::copy_from_gpu(size_t offset, const void* src, size_t num_element, int device_id){
if(head_ == DataHead::Init)
to_gpu(false);
size_t offset_location = offset * element_size();
if(offset_location >= bytes_){
INFOE("Offset location[%lld] >= bytes_[%lld], out of range", offset_location, bytes_);
return *this;
}
size_t copyed_bytes = num_element * element_size();
size_t remain_bytes = bytes_ - offset_location;
if(copyed_bytes > remain_bytes){
INFOE("Copyed bytes[%lld] > remain bytes[%lld], out of range", copyed_bytes, remain_bytes);
return *this;
}
if(head_ == DataHead::Device){
int current_device_id = get_device(device_id);
int gpu_device_id = device();
if(current_device_id != gpu_device_id){
checkRuntime(cudaMemcpyPeerAsync(gpu<unsigned char>() + offset_location, gpu_device_id, src, current_device_id, copyed_bytes, stream_));
//checkRuntime(cudaMemcpyAsync(gpu() + offset_location, src, copyed_bytes, cudaMemcpyDeviceToDevice, stream_));
}
else{
checkRuntime(cudaMemcpyAsync(gpu<unsigned char>() + offset_location, src, copyed_bytes, cudaMemcpyDeviceToDevice, stream_));
}
}else if(head_ == DataHead::Host){
CUDATools::AutoDevice auto_device_exchange(this->device());
checkRuntime(cudaMemcpyAsync(cpu<unsigned char>() + offset_location, src, copyed_bytes, cudaMemcpyDeviceToHost, stream_));
}else{
INFOE("Unsupport head type %d", head_);
}
return *this;
}
Tensor& Tensor::copy_from_cpu(size_t offset, const void* src, size_t num_element){
if(head_ == DataHead::Init)
to_cpu(false);
size_t offset_location = offset * element_size();
if(offset_location >= bytes_){
INFOE("Offset location[%lld] >= bytes_[%lld], out of range", offset_location, bytes_);
return *this;
}
size_t copyed_bytes = num_element * element_size();
size_t remain_bytes = bytes_ - offset_location;
if(copyed_bytes > remain_bytes){
INFOE("Copyed bytes[%lld] > remain bytes[%lld], out of range", copyed_bytes, remain_bytes);
return *this;
}
if(head_ == DataHead::Device){
CUDATools::AutoDevice auto_device_exchange(this->device());
checkRuntime(cudaMemcpyAsync((char*)data_->gpu() + offset_location, src, copyed_bytes, cudaMemcpyHostToDevice, stream_));
}else if(head_ == DataHead::Host){
//checkRuntime(cudaMemcpyAsync((char*)data_->cpu() + offset_location, src, copyed_bytes, cudaMemcpyHostToHost, stream_));
memcpy((char*)data_->cpu() + offset_location, src, copyed_bytes);
}else{
INFOE("Unsupport head type %d", head_);
}
return *this;
}
Tensor& Tensor::release() {
data_->release_all();
shape_.clear();
bytes_ = 0;
head_ = DataHead::Init;
if(stream_owner_ && stream_ != nullptr){
CUDATools::AutoDevice auto_device_exchange(this->device());
checkRuntime(cudaStreamDestroy(stream_));
}
stream_owner_ = false;
stream_ = nullptr;
return *this;
}
bool Tensor::empty() const{
return data_->cpu() == nullptr && data_->gpu() == nullptr;
}
int Tensor::count(int start_axis) const {
if(start_axis >= 0 && start_axis < shape_.size()){
int size = 1;
for (int i = start_axis; i < shape_.size(); ++i)
size *= shape_[i];
return size;
}else{
return 0;
}
}
Tensor& Tensor::resize(const std::vector<int>& dims) {
return resize(dims.size(), dims.data());
}
int Tensor::numel() const{
int value = shape_.empty() ? 0 : 1;
for(int i = 0; i < shape_.size(); ++i){
value *= shape_[i];
}
return value;
}
Tensor& Tensor::resize_single_dim(int idim, int size){
assert(idim >= 0 && idim < shape_.size());
auto new_shape = shape_;
new_shape[idim] = size;
return resize(new_shape);
}
Tensor& Tensor::resize(int ndims, const int* dims) {
vector<int> setup_dims(ndims);
for(int i = 0; i < ndims; ++i){
int dim = dims[i];
if(dim == -1){
assert(ndims == shape_.size());
dim = shape_[i];
}
setup_dims[i] = dim;
}
this->shape_ = setup_dims;
// strides = element_size
this->strides_.resize(setup_dims.size());
size_t prev_size = element_size();
size_t prev_shape = 1;
for(int i = (int)strides_.size() - 1; i >= 0; --i){
if(i + 1 < strides_.size()){
prev_size = strides_[i+1];
prev_shape = shape_[i+1];
}
strides_[i] = prev_size * prev_shape;
}
this->adajust_memory_by_update_dims_or_type();
this->compute_shape_string();
return *this;
}
Tensor& Tensor::adajust_memory_by_update_dims_or_type(){
int needed_size = this->numel() * element_size();
if(needed_size > this->bytes_){
head_ = DataHead::Init;
}
this->bytes_ = needed_size;
return *this;
}
Tensor& Tensor::synchronize(){
CUDATools::AutoDevice auto_device_exchange(this->device());
checkRuntime(cudaStreamSynchronize(stream_));
return *this;
}
Tensor& Tensor::to_gpu(bool copy) {
if (head_ == DataHead::Device)
return *this;
head_ = DataHead::Device;
data_->gpu(bytes_);
if (copy && data_->cpu() != nullptr) {
CUDATools::AutoDevice auto_device_exchange(this->device());
checkRuntime(cudaMemcpyAsync(data_->gpu(), data_->cpu(), bytes_, cudaMemcpyHostToDevice, stream_));
}
return *this;
}
Tensor& Tensor::to_cpu(bool copy) {
if (head_ == DataHead::Host)
return *this;
head_ = DataHead::Host;
data_->cpu(bytes_);
if (copy && data_->gpu() != nullptr) {
CUDATools::AutoDevice auto_device_exchange(this->device());
checkRuntime(cudaMemcpyAsync(data_->cpu(), data_->gpu(), bytes_, cudaMemcpyDeviceToHost, stream_));
checkRuntime(cudaStreamSynchronize(stream_));
}
return *this;
}
template<typename _T>
static inline void memset_any_type(_T* ptr, size_t count, _T value){
for (size_t i = 0; i < count; ++i)
*ptr++ = value;
}
Tensor& Tensor::set_to(float value) {
int c = count();
if (dtype_ == DataType::Float) {
memset_any_type(cpu<float>(), c, value);
}
else if(dtype_ == DataType::Int32) {
memset_any_type(cpu<int>(), c, (int)value);
}
else if(dtype_ == DataType::UInt8) {
memset_any_type(cpu<uint8_t>(), c, (uint8_t)value);
}
else{
INFOE("Unsupport type: %d", dtype_);
}
return *this;
}
int Tensor::offset_array(size_t size, const int* index_array) const{
assert(size <= shape_.size());
int value = 0;
for(int i = 0; i < shape_.size(); ++i){
if(i < size)
value += index_array[i];
if(i + 1 < shape_.size())
value *= shape_[i+1];
}
return value;
}
int Tensor::offset_array(const std::vector<int>& index_array) const{
return offset_array(index_array.size(), index_array.data());
}
Tensor& Tensor::set_norm_mat(int n, const cv::Mat& image, float mean[3], float std[3]) {
assert(image.channels() == 3 && !image.empty() && type() == DataType::Float);
assert(ndims() == 4 && n < shape_[0]);
to_cpu(false);
int width = shape_[3];
int height = shape_[2];
float scale = 1 / 255.0;
cv::Mat inputframe = image;
if(inputframe.size() != cv::Size(width, height))
cv::resize(inputframe, inputframe, cv::Size(width, height));
if(CV_MAT_DEPTH(inputframe.type()) != CV_32F){
inputframe.convertTo(inputframe, CV_32F, scale);
}
cv::Mat ms[3];
for (int c = 0; c < 3; ++c)
ms[c] = cv::Mat(height, width, CV_32F, cpu<float>(n, c));
split(inputframe, ms);
assert((void*)ms[0].data == (void*)cpu<float>(n));
for (int c = 0; c < 3; ++c)
ms[c] = (ms[c] - mean[c]) / std[c];
return *this;
}
Tensor& Tensor::set_mat(int n, const cv::Mat& _image) {
cv::Mat image = _image;
assert(!image.empty() && CV_MAT_DEPTH(image.type()) == CV_32F && type() == DataType::Float);
assert(shape_.size() == 4 && n < shape_[0] && image.channels() == shape_[1]);
to_cpu(false);
int width = shape_[3];
int height = shape_[2];
if (image.size() != cv::Size(width, height))
cv::resize(image, image, cv::Size(width, height));
if (image.channels() == 1) {
memcpy(cpu<float>(n), image.data, width * height * sizeof(float));
return *this;
}
vector<cv::Mat> ms(image.channels());
for (int i = 0; i < ms.size(); ++i)
ms[i] = cv::Mat(height, width, CV_32F, cpu<float>(n, i));
cv::split(image, &ms[0]);
assert((void*)ms[0].data == (void*)cpu<float>(n));
return *this;
}
bool Tensor::save_to_file(const std::string& file) const{
if(empty()) return false;
FILE* f = fopen(file.c_str(), "wb");
if(f == nullptr) return false;
int ndims = this->ndims();
unsigned int head[3] = {0xFCCFE2E2, ndims, static_cast<unsigned int>(dtype_)};
fwrite(head, 1, sizeof(head), f);
fwrite(shape_.data(), 1, sizeof(shape_[0]) * shape_.size(), f);
fwrite(cpu(), 1, bytes_, f);
fclose(f);
return true;
}
bool Tensor::load_from_file(const std::string& file){
FILE* f = fopen(file.c_str(), "rb");
if(f == nullptr){
INFOE("Open %s failed.", file.c_str());
return false;
}
unsigned int head[3] = {0};
fread(head, 1, sizeof(head), f);
if(head[0] != 0xFCCFE2E2){
fclose(f);
INFOE("Invalid tensor file %s, magic number mismatch", file.c_str());
return false;
}
int ndims = head[1];
auto dtype = (TRT::DataType)head[2];
vector<int> dims(ndims);
fread(dims.data(), 1, ndims * sizeof(dims[0]), f);
this->dtype_ = dtype;
this->resize(dims);
fread(this->cpu(), 1, bytes_, f);
fclose(f);
return true;
}
};
头文件中首先定义了两个枚举类,分别是 DataHead 和 DataType,用于表示数据目前的状态(初始化、CPU、GPU)和数据类型,然后定义了一个 Tensor 类,用于获取和设置张量的属性,如维度、形状、类型等
Tensor 存在多个构造函数,比如接受 n,c,h,w 作为 shape,MixMemory 作为 data,关于 tensor 内存的管理和复用我们是通过上节课封装的 MixMemory 来实现的,因此我们重点来看 tensor 内存的拷贝和索引的计算
tensor 内存的拷贝是通过 to_cpu 和 to_gpu 函数实现的,在 to_cpu 函数中,它首先会检查当前内存数据的状态,如果当前的数据已经在 CPU 上了,它会立即返回,避免再次拷贝;如果数据不在 CPU 上,那就说明在 GPU 上,此时我们会将 head_ 设置为 CPU,通过调用 data_->cpu(byes_) 分配一块 CPU 内存,调用的是 MixMemory 的 cpu 方法,像之前说的一样,如果当前分配的 cpu 内存大小已经满足了要求,则它会直接拿之前的内存,实现内存的复用。最后通过 CUDA 的 cudaMemcpyAsync 函数从 GPU 异步复制数据到 CPU,同时还引入了流同步,确保复制完成
tensor 索引的计算是通过 offset 函数来完成的,该函数接收一个变参,然后将它转换成一个数组送到 offset_array 中进行索引计算,遵循我们之前讲解的左乘右加原则,它直接返回的是偏移量,代表 tensor 中的某个元素在内存中的位置
我们接下来看下 main.cpp 中的不同
// tensor的建立并不会立即分配内存,而是在第一次需要使用的时候进行分配
TRT::Tensor input_data({input_batch, input_channel, input_height, input_width}, TRT::DataType::Float);
// 为input关联stream,使得在同一个pipeline中执行复制操作
input_data.set_stream(stream);
首先是 input_data 的构建,我们可以利用封装好的 Tensor 来实现
// 利用opencv mat的内存地址引用,实现input与mat的关联,然后利用split函数一次性完成mat到input的复制
cv::Mat channel_based[3];
for(int i = 0; i < 3; ++i)
// 注意这里 2 - i是实现bgr -> rgb的方式
// 这里cpu提供的参数0是表示batch的索引是0,第二个参数表示通道的索引,因此获取的是0, 2-i通道的地址
// 而tensor最大的好处就是帮忙计算索引,否则手动计算就得写很多代码
channel_based[i] = cv::Mat(input_height, input_width, CV_32F, input_data.cpu<float>(0, 2-i));
cv::split(image, channel_based);
其次是预处理部分,我们采用了 opencv 中的 split 方法将三个通道分割开,这样的性能更好,这也是从 caffe 中学习到了
// 如果不写,input_data.gpu获取gpu地址时会自动进行复制
// 目的就是把内存复制变为隐式进行
input_data.to_gpu();
...
float* bindings[] = {input_data.gpu<float>(), output_data.gpu<float>()};
还有一点要注意的是,我们不需要显性的去做内存复制,在需要的时候会隐式的完成,比如 input_data.gpu 获取 gpu 的数据时,会将 cpu 的数据自动复制到 gpu 上
以上就是 tensor 封装的分析,封装好的 tensor 不用显性的去调用 cuda 的 API,接口更加高级,性能更好。更多细节还是需要多去看
这是一个相对复杂的版本的 tensor 封装,其实也可以只考虑之前提过的四条来封装 tensor,也能解决绝大部分问题
本次课程学习了 tensor 的封装,对 tensor 的封装重点考虑四个方面:内存的管理、内存的复用、内存的拷贝以及索引的计算,其中前面两个可以用 MixMemory 来解决,内存的拷贝通过定义内存的状态,懒分配原则实现的,而索引的计算则是通过之前说的左乘右加完成的。tensor 的封装使得输入和输出的操作更加的便捷,索引的计算也更加的方便。