- 解锁 JavaScript 模块化:ES6 Module 语法深度指南
编程随想▿
ES6javascriptes6前端开发语言
目录ES6Module核心语法1.export-导出模块内容(1)命名导出(NamedExports)(3)混合导出(CombiningNamedandDefault)2.import-导入模块内容(1)导入命名导出(2)导入默认导出(3)混合导入3.动态导入(import())重要特性与注意事项总结ES6Module核心语法ES6Module的核心围绕两个关键字:export和import。1.
- FPGA相关通信问题详解
霖12
fpga开发笔记信号处理信息与通信学习开发语言
首先感谢大佬@征途黯然.-CSDN博客的就我的上篇文章《FPGA通信设计十问》提出的问题,我在此做出回复一.解释FFT(快速傅里叶变换)如何在FPGA的IP核中高效实现FFT作为将时域信号转换为频域的核心算法,其在FPGA中的高效实现依赖于硬件架构与算法特性的深度适配。1.流水线架构:提升吞吐量FFT的核心是“蝶形运算”,其计算过程可分解为log2(N)级(N为FFT点数),每级包含N/2次蝶形运
- Sequential Thinking:AI深度思考的新范式及其与CoT、ReAct的对比分析
码字的字节
人工智能SequentialCoTReAct
引言:AI深度思考的演进与SequentialThinking的崛起在人工智能技术快速发展的今天,AI模型的思考能力正经历着从简单应答到深度推理的革命性转变。这一演进过程不仅反映了技术本身的进步,更体现了人类对机器智能认知边界的持续探索。早期的大语言模型虽然能够生成流畅的文本,但在处理复杂问题时往往表现出"浅思考"的局限性——答案可能看似合理,却缺乏严谨的推理过程和系统性考量。例如,2022年的一
- 多云环境下的统一安全架构设计
TechVision大咖圈
安全架构多云安全合规性统一架构零信任深度防御身份管理
关键词:多云安全、统一架构、零信任、深度防御、身份管理、威胁检测、SIEM、合规性文章目录引言:多云时代的安全挑战多云环境面临的安全挑战统一安全架构设计原则核心安全组件架构多层防护体系设计统一身份管理与访问控制安全监控与威胁检测实施策略与最佳实践总结与展望引言:多云时代的安全挑战在这个"云来云去"的时代,企业就像搬家一样,从单一的云服务商逐渐向多云架构迁移。就好比以前只在一家银行存钱,现在为了"不
- Datawhale X 魔塔 Ai夏令营 --深度学习基础
一、局部极小值与全局极小值全局极小值:在损失函数的整个定义域内,损失值最小的点。这是我们在训练深度学习模型时希望找到的点,因为它代表着模型的最佳性能。局部极小值:在损失函数的一个局部区域内,损失值达到最小,但在整个函数定义域内可能不是最小的。当优化算法陷入局部极小值时,它可能会误以为已经找到了全局最优解,从而停止搜索。局部极小值的检测两种直观的方法来检测局部极小值:可视化方法:对于低维问题,我们可
- 深度学习模块实践手册(第十二期)
加油吧zkf
目标检测目标检测模块解析与实践深度学习人工智能计算机视觉目标检测python
56、Ghost模块论文《GhostNet:MoreFeaturesfromCheapOperations》1、作用:Ghost模块是一种轻量级的特征提取模块,旨在通过廉价操作生成更多特征图,减少计算量的同时保持模型性能。传统卷积神经网络在生成特征图时存在大量冗余计算,Ghost模块通过将特征图生成过程分解为两个步骤,有效减少了计算复杂度,特别适合移动端和嵌入式设备部署。2、机制Ghost模块的机
- DETR革命:目标检测的Transformer时代
加油吧zkf
目标检测YOLOpython开发语言人工智能图像处理
《DETR从0到1:目标检测Transformer的崛起》为什么会有DETR?在深度学习目标检测发展史上,2014~2019年几乎被基于卷积神经网络(CNN)的检测器统治:两阶段:FasterR-CNN、MaskR-CNN单阶段:YOLO、SSD、RetinaNet这些检测器虽然效果强大,但背后依赖:✅Anchor(先验框)✅NMS(非极大值抑制)✅特征金字塔、手工设计问题:结构复杂、调参困难、不
- Gemini CLI 用户界面系统深度解析:从命令行到智能交互的完美转换
步子哥
交互人工智能
前言在深入探索了GeminiCLI的核心引擎、沙盒系统、扩展机制和构建发布系统后,今天我们将深入研究用户直接接触的最前端——CLI用户界面系统。这个系统不仅是用户与AI交互的桥梁,更是一个完整的交互式智能终端¹,它将复杂的AI能力转化为直观、高效的命令行体验。注解1-交互式智能终端:不同于传统的命令行工具,GeminiCLI的用户界面系统实现了真正的智能交互。它既支持传统的命令行操作,又提供了现代
- 算力网异构协同与能效优化驱动工业物联及智慧民生实践
内容概要算力网络作为数字基础设施的核心载体,正通过异构协同架构与能效优化框架的深度融合,构建起支撑工业物联网与智慧民生应用的技术底座。随着边缘计算节点的快速部署与模型压缩技术的突破性发展,工业场景中的设备健康检测与实时故障分析已实现毫秒级响应,典型应用场景包括产线异常识别、设备寿命预测等关键领域。与此同时,数据预处理技术的迭代升级有效缓解了工业传感器数据维度爆炸带来的算力压力,通过特征提取与噪声过
- LeetCode第337题_打家劫舍III
@蓝莓果粒茶
算法leetcode算法职场和发展c#学习
LeetCode第337题:打家劫舍III文章摘要本文详细解析LeetCode第337题"打家劫舍III",这是一道中等难度的二叉树动态规划问题。文章提供了基于深度优先搜索和动态规划的解法,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合想要提升二叉树和动态规划能力的程序员。核心知识点:二叉树、动态规划、深度优先搜索难度等级:中等推荐人群:具有基础数据结构知识,想要提
- 深度学习模块实践手册(第十一期)
加油吧zkf
目标检测目标检测模块解析与实践深度学习人工智能计算机视觉目标检测python
46、缩放点积注意力模块论文《AttentionIsAllYouNeed》1、作用:缩放点积注意力(ScaledDot-ProductAttention)是Transformer模型的核心组件,旨在解决序列建模中长距离依赖关系捕捉的问题。传统的循环神经网络(RNN)在处理长序列时存在梯度消失或爆炸的问题,且并行性较差。该模块通过计算查询(Query)、键(Key)和值(Value)之间的相似度,实
- 【3D并排条状图】:附Origin详细画图教程
目录No.1理解3D并排条状图1什么是3D并排条状图2空间坐标系构建3应用场景No.2画图教程1导入数据并绘图2设置绘图细节3设置图例4设置坐标轴No.1理解3D并排条状图1什么是3D并排条状图3D并排条状图,是一种多维数据可视化形式,通过在三维坐标系中并排展示多个数据系列的柱状体,实现三类变量的联合对比分析。这种图表扩展了传统二维并排条状图的表达能力,增加了深度维度(z轴)的信息承载能力。2空间
- C++ | 玩转点云:CloudCompare & PCL原生开发核心指南与示例分享
河工点云智绘WangG
点云深处CloudCompare&PCL开发c++开发语言
还在为点云处理的效率瓶颈和功能限制发愁吗?面对点云处理个性需求,是否让你感到束手束脚?调试困难、性能受限、定制化需求难以满足...本次分享将带你深入核心,走进点云深处,揭秘如何直接运用C++进行CloudCompare&PCL的原生集成开发。掌握核心步骤,规避常见陷阱,并附实用开发示例源码。助你:效率飙升:直达底层,性能最大化!灵活无限:自由定制算法流程,深度集成业务逻辑!掌控全局:彻底理解框架机
- 零基础搭建免费IP代理池:从原理到实战的保姆级指南
傻啦嘿哟
关于代理IP那些事儿tcp/ip网络协议网络
目录一、代理池的核心价值与底层原理二、环境搭建全流程详解2.1开发环境准备2.2核心组件安装三、核心配置深度解析3.1配置文件精要(setting.py)3.2自定义代理源开发四、核心模块实现原理4.1调度系统架构4.2代理验证算法五、运维实战技巧5.1性能优化策略5.2故障排查手册六、安全加固方案七、扩展升级路径八、典型问题解决方案九、性能基准测试十、合规使用指南一、代理池的核心价值与底层原理在
- iOS 4.3上架终极方案
钱哥出海
ios上架4.3
大家好!今天我来给大家深度解读苹果审核规则4.3的相关问题。相信4.3规则让大多数开发者都头疼不已,因为在应用上架过程中,它引发了诸多难题。首先,我们来看看哪些情况会触发4.3规则。其一,自己开发的APP可能会遇到这个问题;其二,存在抄袭情况的APP也容易触发4.3。这里的抄袭主要指UI层面,而非代码层面。如今线上APP众多,一旦出现UI抄袭,就很可能触发规则。针对这种情况,解决办法是进行全新设计
- 【深度强化学习】MIP-DQN 实现案例(完整Python代码)
目录MIP-DQN算法概述建模基础训练阶段(Training)部署阶段(OnlineExecution)DNN网络转化为MIP表达式性能指标完整Python代码实现主函数:random_generator_battery模型函数:MIP_DQN基础/专用库包安装模型运行(完整Python代码)参数设置函数:Parameters参考本博客根据论文《Optimalenergysystemschedul
- 基于NanoDet的健身姿势纠正系统开发
YOLO实战营
人工智能NanoDet深度学习计算机视觉ui
1.引言在现代健身行业中,正确的运动姿势至关重要,不仅能提升训练效果,还能预防运动损伤。尤其是在进行一些高强度的力量训练时,如深蹲、俯卧撑等,错误的姿势可能导致肌肉不平衡或关节损伤。传统的健身姿势纠正方式依赖教练的人工指导,但随着人工智能技术的发展,使用计算机视觉和深度学习技术来进行姿势纠正,逐渐成为一种高效且可扩展的解决方案。本文将详细介绍如何基于NanoDet(一个轻量化目标检测模型)开发一个
- 大模型算法工程师技术路线全解析:从基础到资深的能力跃迁
Mr.小海
大模型算法数据挖掘人工智能机器学习深度学习机器翻译web3
文章目录大模型算法工程师技术路线全解析:从基础到资深的能力跃迁一、基础阶段(0-2年经验):构建核心知识体系与工程入门数学与机器学习基础编程与深度学习框架NLP与Transformer入门二、进阶阶段(2-4年经验):深化模型技术与工程落地能力大模型预训练与微调技术预训练原理:数据与任务的协同设计微调工具:参数高效适配与工程优化对齐实践:价值观优化与实证效果分布式训练与框架工具并行策略:多维度协同
- Go语言调度器深度解析:sysmon的核心作用与实现原理
码农老gou
GOgolang服务器
在Go语言的并发世界中,Goroutine的高效调度是性能保障的核心。除了众所周知的G-M-P模型,runtime中还有一个默默运行的"幕后英雄"——sysmon(系统监控协程)。作为Go调度器的重要组成部分,sysmon承担着系统级监控、网络轮询、垃圾回收触发等关键任务。本文将深入剖析sysmon的工作原理,通过源码和图示揭示其在Go运行时中的核心作用。一、sysmon的核心职责:系统级监控中枢
- 基于用户画像的商品推荐系统
Dush32
机器学习人工智能python推荐算法
随着人工智能和大数据技术的进步,产品推荐系统成为了现代广告与电商平台中不可或缺的部分。通过深度挖掘用户的行为数据,能够为广告主提供精准的用户画像,从而更高效地推荐相关产品,提升购买转化率。本项目基于科大讯飞AI营销云大赛的赛题,目的是利用用户画像进行产品推荐,预测用户是否会购买相应商品。我们使用了机器学习的二分类模型,通过分析用户的性别、年龄、常驻地、机型等信息,来判断用户的付费行为。项目目标:本
- 【LlamaIndex核心组件指南 | 数据加载篇】从原始数据到向量的全链路深度解析
吴师兄大模型
现代大模型技术与应用llamaindexlangchain开发语言pythonpytorch人工智能大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【深度学习-Day 36】CNN的开山鼻祖:从LeNet-5到AlexNet的架构演进之路
吴师兄大模型
深度学习入门到精通pythonpytorch开发语言人工智能CNN深度学习大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- AI原生应用领域多租户的技术架构剖析
AI天才研究院
AI-native架构人工智能ai
AI原生应用领域多租户技术架构深度剖析元数据框架标题:AI原生应用多租户技术架构:从隔离性到智能化的分层设计与实践关键词:AI原生应用、多租户架构、数据隔离、模型共享、云原生租户管理摘要:本文系统解析AI原生应用场景下多租户技术架构的核心设计逻辑,覆盖从数据层到模型层的全栈隔离与共享机制。通过第一性原理推导,结合云原生、机器学习生命周期管理(MLOps)等技术范式,提出包含租户上下文管理、动态资源
- 大数据集成方案对比:Kafka vs Flume vs Sqoop
AI天才研究院
计算AI大模型应用入门实战与进阶AgenticAI实战大数据kafkaflumeai
大数据集成方案对比:KafkavsFlumevsSqoop关键词:大数据集成、Kafka、Flume、Sqoop、流处理、批量迁移、日志收集摘要:在大数据生态中,数据集成是连接数据源与数据处理平台的关键环节。本文深度对比Kafka、Flume、Sqoop三大主流集成工具,从核心架构、技术原理、适用场景到实战案例展开系统性分析。通过数学模型量化性能差异,结合实际项目经验总结选型策略,帮助开发者根据业
- 工业喷涂机器人的革新:艾利特协作机器人引领人机交互新纪元
lingling009
人工智能运维大数据
将复杂技术转化为实际价值,赋能全球产业生态在工业自动化浪潮中,喷涂作业作为关键制造环节,长期面临效率低下、质量波动和安全隐患等痛点。艾利特机器人,作为专注新一代人机交互协作场景的制造商和迅速成长的国际协作机器人龙头企业之一,致力于通过一站式解决方案,深度升级汽车、3C、新能源等行业生态。本文将基于“工业喷涂机器人”这一核心场景,剖析其痛点、转化技术参数为可感知价值,并植入真实案例,构建“基础功能→
- 焦茶
琉樱SAFS
好累啊,刚刚听完了地理,还要画画,还要准备住宿的东西,今天没有脑细胞了,写不出深度思考了。把自己的一点小感想扩一扩好了。转了一位博主的“为什么画画能控制人的心情啊”。不得不说,实在是很能共情。画画的时候,会不自觉地跟着画面中人物一起做表情,人物笑得很灿烂,我也嘴角上扬直到笑肌发酸;人物哭得稀里哗啦,我的表情也皱成一团;人物目眦欲裂,我眼睛也同时睁大;人物厌世脸冷冰冰,我也面无表情。再就是这位博主发
- 人脸识别实战:使用Python OpenCV 和深度学习进行人脸识别(2)
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课
- 22、Python 多线程编程与GIL锁机制深度解析
wolf犭良
pythonpython开发语言
Python多线程编程与GIL锁机制深度解析引言:多线程的意义与挑战在Python并发编程领域,多线程技术因其轻量级和易用性广受欢迎。然而全球解释器锁(GIL)的存在使得Python多线程在CPU密集型任务中表现特殊。本文将通过理论解析、代码实战和性能测试,带你全面掌握线程同步机制,深入理解GIL的工作机制,并提供绕过性能瓶颈的解决方案。一、多线程编程基础1.1线程创建方式Python通过thre
- Spring AOT(Ahead-of-Time)深度解析:下一代云原生架构核心
csdn_tom_168
Springspring云原生架构AOT
SpringAOT(Ahead-of-Time)深度解析:下一代云原生架构核心SpringAOT(Ahead-of-Time)编译是Spring框架6和SpringBoot3的革命性创新,彻底改变了Java应用的部署范式。本文将全面解析SpringAOT的工作原理、核心组件及企业级实践方案。一、AOT编译范式转变1.传统JVM模式vsAOT模式对比维度JVM模式AOT模式启动时间秒级(2-10s)
- Python练习(6)Python面向对象编程三大特性:封装、继承与多态的15道实战练习题(含答案与深度解析)
一个天蝎座白勺程序猿
python开发语言
目录引言封装篇(5题)练习1:银行账户安全封装练习2:属性装饰器控制练习3:私有方法调用练习4:受保护属性继承练习5:类属性封装继承篇(5题)练习6:单继承与方法重写练习7:多继承与MRO练习8:抽象基类实现练习9:Mixin模式练习10:super()函数应用多态篇(5题)练习11:接口多态练习12:鸭子类型练习13:多态与异常处理练习14:多态与类型检查练习15:多态与装饰器总结Python爬
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi