LeetCode 刷题集 - 分治、回溯、贪心、二分查找、BFS、DFS(3)

分治算法:谈一谈大规模计算框架 MapReduce 中的分治思想

回溯算法:从电影《蝴蝶效应》中学习回溯算法的核心思想

深度和广度优先搜索:如何找出社交网络中的三度好友关系?

贪心算法:如何用贪心算法实现 Huffman 压缩编码?

二分查找(上):如何用最省内存的方式实现快速查找功能?

二分查找(下):如何快速定位 IP 对应的省份地址?

分治代码模板

牛顿迭代法原理

牛顿迭代法代码

DFS 代码模板(递归写法、非递归写法)

BFS 代码模板

动态规划定义

二分查找代码模板

Fast InvSqrt() 扩展阅读

LeetCode题目:

分治:

1. Pow(x, n)

class Solution {
    func myPow(_ x: Double, _ n: Int) -> Double {
        var x = x, n = n
        var res = 1.0
        if x == 0 { return 0 }
        if n < 0 {
            x = 1 / x
            n = -n
        }
        while n != 0 {
            if n & 1 == 1 { res = res * x }
            x = x * x
            n = n >> 1
        }
        return res
    }
}

回溯:

2.子集

class Solution {
    func subsets(_ nums: [Int]) -> [[Int]] {
        var res = Array>()
        var cur = Array()
        dfs(level: 0, max: nums.count, nums: nums, res: &res, cur: &cur)
        return res
    }
    func dfs(level: Int, max: Int, nums: [Int], res: inout [[Int]], cur: inout [Int]){
        if level == max {
            res.append(cur)
            return
        }
        cur.append(nums[level])
        dfs(level: level + 1, max: max, nums: nums, res: &res, cur: &cur)
        cur.removeLast()
        dfs(level: level + 1, max: max, nums: nums, res: &res, cur: &cur)
    }
}

3.电话号码的字母组合

class Solution {
func letterCombinations(_ digits: String) -> [String] {
        if digits == "" { return [] }
        var digitsArray = Array()
        for i in digits {
            digitsArray.append(String(i))
        }
        let numDict: Dictionary> = ["2": ["a", "b", "c"],
                                                          "3": ["d", "e", "f"],
                                                          "4": ["g", "h", "i"],
                                                          "5": ["j", "k", "l"],
                                                          "6": ["m", "n", "o"],
                                                          "7": ["p", "q", "r", "s"],
                                                          "8": ["t", "u", "v"],
                                                          "9": ["w", "x", "y", "z"]]
        var res = Array()
        var curStr = ""
        dfs(digitsArray: digitsArray, numDict: numDict, res: &res, curStr: &curStr, index: 0)
        return res
    }
    func dfs(digitsArray: Array, numDict: Dictionary>, res: inout Array, curStr: inout String, index: Int) {
        if index == digitsArray.count {
            res.append(curStr)
            return
        }
        let lettersArray = numDict[digitsArray[index]]
        for i in 0..

4.N 皇后

class Solution {
     var cols = Set()
        var pie = Set()
        var na = Set()
        func solveNQueens(_ n: Int) -> [[String]] {
            var res = Array>()
            let cur = Array()
            backtracking(n: n, row: 0, res: &res, cur: cur)
            return finalResult(res: res, n: n)
        }
        func backtracking(n: Int, row: Int, res: inout Array>, cur: Array) {
            if row == n {
                res.append(cur)
                return
            }
            for col in 0..>, n: Int) -> Array> {
            var resArray = Array>()
            for i in res {
                var tempArray = Array()
                for j in i {
                    var tempStr = ""
                    for k in 0..

贪心

5.分发饼干

class Solution {
    func findContentChildren(_ g: [Int], _ s: [Int]) -> Int {
        let sortedG = g.sorted(by: <)
        var sortedS = s.sorted(by: <)
        var res = 0
        for g in sortedG {
            for (indexs, s) in sortedS.enumerated() {
                if s >= g {
                    res += 1
                    sortedS.remove(at: indexs)
                    break
                }
                continue
            }
        }
        return res
    }
}

6.买卖股票的最佳时机 II

-DP

class Solution {
func maxProfit(_ prices: [Int]) -> Int {
        let prices = [0] + prices
        var dpArr = Array(repeating: Array(repeating: 0, count: 2), count: prices.count)
        dpArr[0][0] = 0
        dpArr[0][1] = Int(-1000000)
        for i in 1...prices.count - 1 {
            for j in 0...1 {
                if j == 0 {
                    dpArr[i][j] = max(dpArr[i - 1][1] + prices[i], dpArr[i - 1][0])
                } else {
                    dpArr[i][j] = max(dpArr[i - 1][0] - prices[i], dpArr[i - 1][1])
                }
            }
        }
        return dpArr[prices.count - 1][0]
    }
}

-贪心

class Solution {
    func maxProfit(_ prices: [Int]) -> Int {
        var everyProfit = 0
        var res = 0
        for (index, i) in prices.enumerated() {
            if index == prices.count - 1 {
                break
            }
            everyProfit = prices[index + 1] - i
            if everyProfit > 0 {
                res += everyProfit
            }
        }
        return res
    }
}

7.跳跃游戏

-DP

class Solution {
func canJump(_ nums: [Int]) -> Bool {
        guard nums.count > 1 else {
            return true
        }
        if nums.count == 2 {
            return nums.first! >= 1 ? true : false
        }
        if nums.first! == 0 {
            return false
        }
        var dpArr = nums
        var res = 0
        for i in 1..= nums.count - 1) ? true : false
    }
}

-贪心

class Solution {
    func canJump(_ nums: [Int]) -> Bool {
        if nums.count == 1 {
            return true
        }
        var cover = 0
        var i = 0
        while cover < nums.count - 1 {
            if i > cover {
                return false
            }
            cover = max(i + nums[i], cover)
            i += 1
        }
        return true
    }
}

8.跳跃游戏 II

-DP

class Solution {
func jump(_ nums: [Int]) -> Int {
        if nums.count == 1 {
            return 0
        }
        if nums.count == 2 {
            return 1
        }
        var dpArr = Array(repeating: 10000000, count: nums.count)
        dpArr[0] = 0
        var cover = nums.first!
        for i in 1.. nums.count - 1 {
                cover = nums.count - 1
            }
            for j in i...cover {
                dpArr[j] = min(dpArr[i - 1] + 1, dpArr[j])
            }
            cover = max(cover, i + nums[i])
        }
        return dpArr.last!
    }
}

-贪心


class Solution {
var level = 0
        func jump(_ nums: [Int]) -> Int {
            guard nums.count > 1 else {
                return 0
            }
            var cover = 0
            var i = 0
            while cover < nums.count - 1 {
                cover = max(cover, i + nums[i])
                i += 1
            }
            level += 1
            jump(Array(nums[0...i - 1]))
            return level
        }
}

9.柠檬水找零

class Solution {
func lemonadeChange(_ bills: [Int]) -> Bool {
        var fiveRem = 0
        var tenRem = 0
        var twlRem = 0
        for i in bills {
            switch i {
            case 5:
                fiveRem += 1
            case 10:
                guard fiveRem > 0 else {
                    return false
                }
                fiveRem -= 1
                tenRem += 1
            case 20:
                if tenRem > 0 && fiveRem > 0 {
                    tenRem -= 1
                    fiveRem -= 1
                    twlRem += 1
                    continue
                }
                if tenRem == 0 && fiveRem >= 3 {
                    fiveRem -= 3
                    twlRem += 1
                    continue
                }
                return false
            default:
                return false
            }
        }
        return true
    }
}

二分查找

10.搜索旋转排序数组

class Solution {
func search(_ nums: [Int], _ target: Int) -> Int {
        guard nums.contains(target) else {
            return -1
        }
        var left = 0, right = nums.count - 1
        while left <= right {
            let mid = left + (right - left) / 2
            if nums[mid] == target { return mid }
            if nums[mid] >= nums[left] {
                // 左边有序且升序
                if target < nums[mid] && target >= nums[left] {
                    right = mid - 1
                } else {
                    left = mid + 1
                }
            }else if nums[mid] < nums[right] {
                // 右边有序且升序
                if target > nums[mid] && target <= nums[right] {
                    left = mid + 1
                } else {
                    right = mid - 1
                } 
            }
        }
        return right
    }
}

11.搜索二维矩阵

-无脑查找

class Solution {
    func searchMatrix(_ matrix: [[Int]], _ target: Int) -> Bool {
        for arr in matrix {
            if arr.contains(target) {
                return true
            }
        }
        return false
    }
}

-二分查找

class Solution {
func searchMatrix(_ matrix: [[Int]], _ target: Int) -> Bool {
        guard matrix.count != 0 else {
            return false
        }
        var left = 0, right = matrix.count * matrix.first!.count - 1
        while left <= right {
            let mid = left + (right - left) / 2
            if matrix[firstIndex(num: mid, matrix: matrix)][secondIndex(num: mid, matrix: matrix)] == target {
                // mid == target
                return true
            }
            if matrix[firstIndex(num: mid, matrix: matrix)][secondIndex(num: mid, matrix: matrix)] < target {
                // mid < target
                left = mid + 1
            } else {
                right = mid - 1
            }
        }
        return false
    }
    func firstIndex(num: Int, matrix: [[Int]]) -> Int {
        return num / matrix.first!.count
    }
    func secondIndex(num: Int, matrix: [[Int]]) -> Int {
        return num % matrix.first!.count
    }
}

12.寻找旋转排序数组中的最小值

class Solution {
func findMin(_ nums: [Int]) -> Int {
        var left = 0, right = nums.count - 1, minNnum = nums[left]
        while left <= right {
            let mid = left + (right - left) / 2
            if nums[mid] >= nums[left] {
                // 左有序且升序,那么左边最小值就是nums[left]
                minNnum = min(nums[left], minNnum)
                left = mid + 1
            } else if nums[mid] <= nums[right] {
                // 右有序且升序,那么右边最小值就是nums[mid]
                minNnum = min(nums[mid], minNnum)
                right = mid - 1
            }
        }
        return minNnum
    }
}

13.x 的平方根

-常规思路

class Solution {
    func mySqrt(_ x: Int) -> Int {
        var res = 0
        while res * res < x {
            res += 1
            
        }
        return res * res > x ? res - 1 : res
    }
}

-二分查找

class Solution {
    func mySqrt(_ x: Int) -> Int {
        var left = 0, right = x
        while left <= right {
            let mid = left + (right - left) / 2
            if mid * mid == x {
                return mid
            } else if mid * mid < x {
                left = mid + 1
            } else {
                right = mid - 1
            }
        }
        return right
    }
}

-牛顿迭代

class Solution {
    func mySqrt(_ x: Int) -> Int {
        if x == 0 { return 0 }
        var C = Double(x), x0 = Double(x)
        while true {
            let x1 = 0.5 * (x0 + C / x0)
            if abs(x1 - x0) < 1e-7 {
                break
            }
            x0 = x1
        }
        return Int(x0)
    }
}

14.有效的完全平方数

class Solution {
    func isPerfectSquare(_ num: Int) -> Bool {
        var left = 0, right = num
        while left <= right {
            let mid = left + (right - left) / 2
            if mid * mid == num {
                return true
            } else if mid * mid < num {
                left = mid + 1
            } else {
                right = mid - 1
            }
        }
        return right * right == num ? true : false
    }
}

15.多数元素

class Solution {
    func majorityElement(_ nums: [Int]) -> Int {
      return majorityElementRec(nums, 0, nums.count - 1)
    }
  
    //! 求解出 数组[left,right] 区间的多数元素
    func majorityElementRec(_ nums: [Int], _ left: Int, _ right: Int) -> Int {
      //! 递归基
      if left == right {
        return nums[left]
      }
    
      let mid = (left+right)/2
      //! 求解出左边和右边区间的多数元素
      let leftNumber = majorityElementRec(nums,left,mid)
      let rightNumer = majorityElementRec(nums, mid + 1, right)
      //! 如果左右区间的多数元素一样,那么代表已经找到了
      if leftNumber == rightNumer {
        return leftNumber
      }
      //! 不一样,那么我们需要计算 两个多数元素的个数,进行比较再选出多数元素
      let leftCount = countInRange(nums, leftNumber, left, right)
      let rightCount = countInRange(nums, rightNumer, left, right)
      return leftCount > rightCount ? leftNumber : rightNumer
    }

    //! 计算多数元素出现的个数
    func countInRange(_ nums: [Int], _ majority: Int, _ left: Int, _ right: Int) -> Int {
      var count = 0
      for i in left...right {
        if nums[i] == majority {
          count += 1
        }
      }
      return count
    }
}

BFS

16.二叉树的层序遍历

class Solution {
func levelOrder(_ root: TreeNode?) -> [[Int]] {
        var res = Array>()
        bfs(root: root, res: &res)
        return res
    }
    func bfs(root: TreeNode?, res: inout Array>) {
        if root == nil { return }
        var queue = Array()
        queue = [root]
        var temp = Array()
        temp.append(root!.val)
        while !queue.isEmpty {
            res.append(temp)
            temp.removeAll()
            for _ in 0..

17.最小基因变化

class Solution {
func minMutation(_ start: String, _ end: String, _ bank: [String]) -> Int {
        guard bank.contains(end) else {
            return -1
        }
        var queue = Array()
        var visited = Set()
        queue.append(start)
        visited.insert(start)
        var res = 1
        while !queue.isEmpty {
            for _ in 0.. Bool {
        var difCount = 0
        for (index, _) in cur.enumerated() {
            if cur[cur.index(cur.startIndex, offsetBy: index)] != str[str.index(str.startIndex, offsetBy: index)] {
                difCount += 1
            }
        }
        return difCount == 1 ? true : false
    }
}

18.在每个树行中找最大值

class Solution {
 func largestValues(_ root: TreeNode?) -> [Int] {
        var res = Array()
        bfs(root: root, res: &res)
        return res
    }
    func bfs(root: TreeNode?, res: inout Array) {
        guard let root = root else {
            return
        }
        var queue = Array()
        queue.append(root)
        var temp = Array()
        temp.append(root.val)
        while !queue.isEmpty {
            res.append(temp.max()!)
            temp.removeAll()
            for _ in 0..

19.单词接龙


class Solution {
func ladderLength(_ beginWord: String, _ endWord: String, _ wordList: [String]) -> Int {
        if !wordList.contains(endWord) { return 0 }
        let wordListSet: Set = Set.init(wordList)
        var beginSet = Set(), endSet = Set(), visited = Set()
        var len = 1
        beginSet.insert(beginWord)
        endSet.insert(endWord)
        while !beginSet.isEmpty && !endSet.isEmpty {
            // 交换 要搞小的
            if beginSet.count > endSet.count {
                let tempSet = beginSet
                beginSet = endSet
                endSet = tempSet
            }
            var tempSet = Set()
            for word in beginSet{
                var curArray = Array(word)
                for i in 0..

20.单词接龙 II

-单向BFS 超时看print就知道思路了。

class Solution {
    func findLadders(_ beginWord: String, _ endWord: String, _ wordList: [String]) -> [[String]] {
        if !wordList.contains(endWord) { return [] }
        var wordListSet: Set = Set.init(wordList)
        wordListSet.insert(beginWord)
        var wordIdDict: Dictionary = Dictionary()
        var idWordDict: Dictionary = Dictionary()
        for (index, word) in wordListSet.enumerated() {
            wordIdDict.updateValue("\(index)", forKey: word)
            idWordDict.updateValue(word, forKey: "\(index)")
        }
        var visited = Set()
        var queue = Array()
        var line = Set>()
        let endWordId = wordIdDict[endWord]
        line.insert([wordIdDict[beginWord]!])
        queue.append(beginWord)
        var resArray = Array>()
        while !queue.isEmpty {
            let count = queue.count
            for _ in 0..>()
        resArray.sort { (a, b) -> Bool in
            a.count < b.count
        }
        for arr in resArray {
            if arr.count == resArray.first?.count {
                res.append(arr)
            }
        }
        var finalRes = Array>()
        for resArr in res {
            var temp = Array()
            for str in resArr {
                temp.append(idWordDict[str]!)
            }
            finalRes.append(temp)
        }
        return finalRes
    }
        func canBeNextWord(cur: String, str: String) -> Bool {
            var difCount = 0
            for (index, _) in cur.enumerated() {
                if cur[cur.index(cur.startIndex, offsetBy: index)] != str[str.index(str.startIndex, offsetBy: index)] {
                    difCount += 1
                }
            }
            return difCount == 1 ? true : false
        }
    
}

DFS

21.岛屿数量

class Solution {
    func numIslands(_ grid: [[Character]]) -> Int {
        var mutableGrid = grid
        var count = 0
        guard grid.count != 0 else {
            return 0
        }
        let row = grid.count
        let col = grid.first?.count
        for r in 0.. mutableGrid.count - 1 || c > ((mutableGrid.first?.count)! - 1) || mutableGrid[r][c] == "0" {
            return
        }
        mutableGrid[r][c] = "0"
        dfs(r: r - 1, c: c, mutableGrid: &mutableGrid)
        dfs(r: r + 1, c: c, mutableGrid: &mutableGrid)
        dfs(r: r, c: c - 1, mutableGrid: &mutableGrid)
        dfs(r: r, c: c + 1, mutableGrid: &mutableGrid)
    }
}

22.扫雷游戏

class Solution {
func updateBoard(_ board: [[Character]], _ click: [Int]) -> [[Character]] {
        var mutableBoard = board
        let row = click[0], col = click[1]
        let dRow = [-1, 1, 0, 0, -1, 1, -1, 1], dCol = [0, 0, -1, 1, -1, -1, 1, 1]
        if mutableBoard[row][col] == "M" {
            mutableBoard[row][col] = "X"
        } else {
            dfs(row: row, col: col, mutableBoaed: &mutableBoard, dRow: dRow, dCol: dCol)
        }
        return mutableBoard
    }
    
    func dfs(row: Int, col: Int, mutableBoaed: inout [[Character]], dRow: [Int], dCol: [Int]) {
        if row < 0 || col < 0 || row > mutableBoaed.count - 1 || col > mutableBoaed.first!.count - 1 || mutableBoaed[row][col] == "B" || mutableBoaed[row][col] == "M" {
            return
        }
        let (haveBomb, bombCount) = hasBomb(row: row, col: col, mutableBoaed: mutableBoaed, dRow: dRow, dCol: dCol)
        if haveBomb {
            mutableBoaed[row][col] = Character("\(bombCount)")
            return
        } else {
            mutableBoaed[row][col] = "B"
        }
        // 上
        dfs(row: row - 1, col: col, mutableBoaed: &mutableBoaed, dRow: dRow, dCol: dCol)
        // 下
        dfs(row: row + 1, col: col, mutableBoaed: &mutableBoaed, dRow: dRow, dCol: dCol)
        // 左
        dfs(row: row, col: col - 1, mutableBoaed: &mutableBoaed, dRow: dRow, dCol: dCol)
        // 右
        dfs(row: row, col: col + 1, mutableBoaed: &mutableBoaed, dRow: dRow, dCol: dCol)
        // 左斜上
        dfs(row: row - 1, col: col - 1, mutableBoaed: &mutableBoaed, dRow: dRow, dCol: dCol)
        // 左斜下
        dfs(row: row + 1, col: col - 1, mutableBoaed: &mutableBoaed, dRow: dRow, dCol: dCol)
        // 右斜上
        dfs(row: row  - 1, col: col + 1, mutableBoaed: &mutableBoaed, dRow: dRow, dCol: dCol)
        // 右斜下
        dfs(row: row + 1, col: col + 1, mutableBoaed: &mutableBoaed, dRow: dRow, dCol: dCol)
    }
    func hasBomb(row: Int, col: Int, mutableBoaed: [[Character]], dRow: [Int], dCol: [Int]) -> (Bool, Int) {
        var bombCount = 0
        for i in 0.. mutableBoaed.count - 1 || col + dCol[i] < 0 || col + dCol[i] > mutableBoaed.first!.count - 1 {
                continue
            }
            if mutableBoaed[row + dRow[i]][col + dCol[i]] == "M" {
                bombCount += 1
            }
        }
        if bombCount != 0 {
            return (true, bombCount)
        } else {
            return (false, 0)
        }
    }
}

23.模拟行走机器人

class Solution {
    func robotSim(_ commands: [Int], _ obstacles: [[Int]]) -> Int {
        var currentDirection = "North"
        var coordinate = (x:0, y:0)
        var obstaclesSet = Set>()
        var maxDistance = 0
        for i in obstacles {
            obstaclesSet.insert(i)
        }
        for i in commands {
            switch i {
            case -1:
                currentDirection = solveDirection(currentDirection: currentDirection, turnTo: -1)
            case -2:
                currentDirection = solveDirection(currentDirection: currentDirection, turnTo: -2)
            case 1...9:
                coordinate = solveCoordinate(currentDirection: currentDirection, steps: i, coordinate: coordinate, obstaclesSet: obstaclesSet, maxDistance: &maxDistance)
            default:
                break
            }
        }
        return maxDistance
    }
    func solveCoordinate(currentDirection: String, steps: Int, coordinate: (x:Int, y:Int), obstaclesSet: Set>, maxDistance: inout Int) -> (Int, Int) {
        var resCoordinate = coordinate
        switch currentDirection {
        case "North":
            // +Y
            for _ in 1...steps {
                if obstaclesSet.contains([resCoordinate.x, resCoordinate.y + 1]) {
                    maxDistance = max(resCoordinate.x * resCoordinate.x + resCoordinate.y * resCoordinate.y, maxDistance)
                    return resCoordinate
                }
                resCoordinate.y += 1
                maxDistance = max(resCoordinate.x * resCoordinate.x + resCoordinate.y * resCoordinate.y, maxDistance)
            }
        case "East":
            for _ in 1...steps {
                if obstaclesSet.contains([resCoordinate.x + 1, resCoordinate.y]) {
                    maxDistance = max(resCoordinate.x * resCoordinate.x + resCoordinate.y * resCoordinate.y, maxDistance)
                    return resCoordinate
                }
                resCoordinate.x += 1
                maxDistance = max(resCoordinate.x * resCoordinate.x + resCoordinate.y * resCoordinate.y, maxDistance)
            }
        case "South":
            for _ in 1...steps {
                if obstaclesSet.contains([resCoordinate.x, resCoordinate.y - 1]) {
                    maxDistance = max(resCoordinate.x * resCoordinate.x + resCoordinate.y * resCoordinate.y, maxDistance)
                    return resCoordinate
                }
                resCoordinate.y -= 1
                maxDistance = max(resCoordinate.x * resCoordinate.x + resCoordinate.y * resCoordinate.y, maxDistance)
            }
        case "West":
            for _ in 1...steps {
                if obstaclesSet.contains([resCoordinate.x - 1, resCoordinate.y]) {
                    maxDistance = max(resCoordinate.x * resCoordinate.x + resCoordinate.y * resCoordinate.y, maxDistance)
                    return resCoordinate
                }
                resCoordinate.x -= 1
                maxDistance = max(resCoordinate.x * resCoordinate.x + resCoordinate.y * resCoordinate.y, maxDistance)
            }
        default:
            break
        }
        return resCoordinate
    }
    func solveDirection(currentDirection: String, turnTo: Int) -> String {
        var resDirection = ""
        switch currentDirection {
        case "North":
            turnTo == -1 ? (resDirection = "East") : (resDirection = "West")
        case "East":
            turnTo == -1 ? (resDirection = "South") : (resDirection = "North")
        case "South":
            turnTo == -1 ? (resDirection = "West") : (resDirection = "East")
        case "West":
            turnTo == -1 ? (resDirection = "North") : (resDirection = "South")
        default:
            break
        }
        return resDirection
    }
}

你可能感兴趣的:(LeetCode 刷题集 - 分治、回溯、贪心、二分查找、BFS、DFS(3))