- 小南每日 AI 资讯 |美国与日本企业联合投资“星际之门”项目| 罗永浩老师最新初创项目上线! | 25/01/24
小南AI学院
人工智能microsoft
近期人工智能(AI)领域的重要动态随着人工智能技术的迅猛发展,多个领域涌现出令人瞩目的创新。以下是近期AI领域的几项重大进展,涵盖技术创新、行业合作以及AI在各个领域的应用:1.AI技术创新与产品发布DeepSeek发布开源模型R1,挑战传统开发模式中国初创公司深度求索(DeepSeek)于1月27日发布开源AI模型R1。该模型以低成本实现接近OpenAIGPT-3的性能,打破了“越大越好”的传统
- AIGC的底层框架和技术模块
五岔路口
AIGC
AIGC(ArtificialIntelligenceGeneratedContent,人工智能生成内容)的底层框架和技术模块是构建其强大自然语言处理能力的核心组成部分。以下是对AIGC底层框架和技术模块的详细解析:底层框架AIGC的底层框架主要基于深度学习的语言模型,特别是Transformer模型及其变种,如GPT(GenerativePre-trainedTransformer)等。这些模型
- 什么是MOE架构?哪些大模型使用了MOE?
明哲AI
AIGC架构人工智能大模型MOE
在人工智能快速发展的今天,大语言模型(LLM)的规模越来越大,参数量动辄上千亿甚至万亿。然而,更大的模型往往意味着更高的计算成本和更多的资源消耗。混合专家模型(MixtureofExperts,简称MoE)作为一种创新的架构设计,为解决这一难题提供了一个优雅的解决方案。什么是混合专家模型?想象一下,如果把一个大语言模型比作一所综合性大学,传统的模型就像是让所有教授(参数)都参与每一次教学活动。而M
- 某验第四代滑块逆向快速破解
码王吴彦祖
JS逆向实战js逆向node.js加密
本期地址如下,使用base64解码获得网址aHR0cHM6Ly9ndDQuZ2VldGVzdC5jb20v前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站破解某验,某盾已经是司空见惯的事情了,网上也有很多资料查阅,但是大多数都是繁琐、冗长,本文以最直接快速理解的方法讲解,稍微认真一点看完文章,你至少能在半个小时内完成破解本文大致步骤如下:找到加密位置
- 新春特辑:人工智能专题大复盘
互联互通社区
人工智能大数据区块链python编程语言
播洒一年的阳光,收获一路的辉煌;挥洒一年的汗水,绽放一路的明媚;付出一年的辛苦,装点一路的幸福;感谢一年的努力,创造一路的奇迹。新的一年,愿与你再扬帆济海,创造美好精彩!人工智能:人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟
- 【新春特辑】2025年1月科技浪潮中的AI最新时事与科技趋势
我的青春不太冷
科技最新时事AI大爆炸学习
2025年1月科技浪潮中的AI最新时事与科技趋势一、AI科技时事人工智能代理(AIAgent)的发展最新进展:人工智能代理正逐步成为科技领域的新热点。这些代理能够自主执行特定任务,如管理日程、回复邮件等。然而,它们仍面临可靠性、可访问性和安全性等方面的挑战。随着技术的不断进步,这些挑战有望逐步得到解决。未来展望:未来,AI代理将更加智能化,能够更好地理解用户需求并提供个性化服务。同时,它们也将成为
- 计算机视觉:解锁智能时代的钥匙与实战案例
我的运维人生
计算机视觉人工智能运维开发技术共享
计算机视觉:解锁智能时代的钥匙与实战案例在人工智能的浩瀚星空中,计算机视觉无疑是最为璀璨的星辰之一。它不仅让机器拥有了“看”的能力,更是推动了自动驾驶、安防监控、医疗影像分析、智能制造等多个领域的革新。本文将深入探讨计算机视觉的核心技术、最新进展,并通过一个具体的代码案例,展示如何在实际项目中应用这些技术。一、计算机视觉概述计算机视觉,简而言之,是指让计算机系统从数字图像或视频中提取有用信息的过程
- 人工智能导论--第1章-知识点与学习笔记
想拿高薪的韭菜
人工智能学习笔记
请根据教材内容,完成进行下面的作业任务。必须包含有教材的具体内容,不能是生成式AI系统的生成内容。参考教材1.1节的内容介绍,谈谈你对“智能”的认识。思维能力是智能的重要特征之一,结合教材1.1.2节内容,从思维的定义、分类及其特点等角度,阐述思维的含义。参考教材1.1.3节的内容介绍,名词解析“人工智能”。参考教材1.2节的内容介绍,介绍人工智能的发展简史。参考教材1.3节的内容介绍,人工智能作
- Python从0到100(八十一):神经网络-Fashion MNIST数据集取得最高的识别准确率
是Dream呀
python神经网络开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 老玩童:互联网智慧助老平台——科技赋能银发族,开启智慧养老新生活
IT源码大师
科技生活
详细描述:1.引言随着全球老龄化社会的加速到来,老年人的生活质量和社会参与度成为社会关注的焦点。传统的养老服务模式往往存在资源不足、服务单一、效率低下等问题,难以满足老年人日益增长的多样化需求。基于互联网技术的智慧助老平台“老玩童”,通过整合物联网、大数据、人工智能等先进技术,构建了一个全方位、智能化、个性化的助老服务体系,为老年人及其家庭提供了全新的解决方案。本文将深入探讨这一平台的核心理念、技
- 什么是ROS2
听风胖耗子
机器人
ROS是机器人操作系统的简称,它本身并不是一个操作系统,而是可以安装在现在已有的操作系统(Linux、Windows、Mac)上的一组用于构建机器人应用程序的软件库和工具集。ROS包括两个版本ROS1和ROS2,ROS1是在2007年由斯坦福大学人工智能实验室与机器人技术公司WillowGarage为了个人机器人项目的合作而开发的,2008年后由WillowGarage来进行推动,目前由开源机器人
- 从零开始大模型开发与微调:汉字拼音数据集处理
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:汉字拼音数据集处理1.背景介绍1.1问题的由来在人工智能领域,自然语言处理(NLP)是一项基础且重要的研究方向。随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModel,LLM)在NLP领域取得了显著的成果。然而,LLM的训练与微调过程往往需要海量的文本数据,而这些数据通常以自然语言形式存在,难以直接用于模型训练。因此,如何从自然语言数据中提取结构
- 本地部署LLM工具大比拼:谁才是你的智能之选?
Python_金钱豹
microsoftocr人工智能cnntransformer分类
在人工智能的浪潮中,本地部署LLM工具为我们开启了个性化智能交互的新大门。今天,就带大家深入对比几款热门的本地部署LLM工具:ollama、Llamafile、jan、LLaMa.cpp、GPT4All、LMStudio,从多个关键角度剖析它们的特点与优势,助你挑选出最契合自身需求的智能伙伴。一、安装使用便捷性大排名1.ollama:轻松上手的智能先锋ollama的安装便捷性堪称一流。只需一条简单
- 一张图看懂AI技术架构!开发、训练、部署全链路深度解析!
和老莫一起学AI
人工智能数据挖掘学习llamaai大模型程序员
人工智能(AI)技术的快速发展,使得企业在AI模型的开发、训练、部署和运维过程中面临前所未有的复杂性。从数据管理、模型训练到应用落地,再到算力调度和智能运维,一个完整的AI架构需要涵盖多个层面,确保AI技术能够高效、稳定地运行。本文将基于AI技术架构全景图,深入剖析AI的开发工具、AI平台、算力与框架、智能运维四大核心部分,帮助大家系统性地理解AI全生命周期管理。一、AI开发工具:赋能高效开发,提
- Forbes:2025年人工智能发展前瞻
人工智能学家
人工智能百度
来源:科技世代千高原克雷格·S·史密斯CraigS.Smith2025年1月7日技术发展速度飞快,转眼间,星辰延伸成星线,我们今天所处的位置与几天前相去甚远。越来越难以预测明天我们会身在何处。有一点是明确的:我们正在进入通用人工智能(AGI)领域,超级人工智能(ASI)现在似乎触手可及。无论如何定义,AGI不会突然出现;它会不断发展,我们已经看到了它逐渐展开的迹象。AGI的曙光AGI一直以来都是我
- 数字化转型导师坚鹏:AI大模型DEEPSEEK重构人工智能格局的里程碑
银行数字化转型导师坚鹏
人工智能重构DEEPSEEKAI
数字化转型导师坚鹏:AI大模型DEEPSEEK重构人工智能格局的里程碑在人工智能领域迅猛发展的浪潮中,每一次重大技术突破都犹如一颗投入平静湖面的巨石,激起千层浪。DEEPSEEK的发布,无疑是近期人工智能领域最受瞩目的事件之一。凭借其独特的技术优势和创新理念,DEEPSEEK迅速在全球人工智能舞台上崭露头角,对现有的人工智能格局产生了多维度、深层次的影响。一、技术突破:从"追赶者"到"规则制定者"
- AI在虚拟试衣中的应用:革新在线购物体验
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟试衣中的应用:革新在线购物体验关键词:虚拟试衣,增强现实,在线购物,深度学习,图像识别,人工智能,用户交互1.背景介绍1.1问题由来随着电子商务的迅猛发展,在线购物已经成为人们日常生活的一部分。然而,由于无法亲身试穿,在线购物体验在满足用户个性化需求方面仍存在诸多不足。传统的网页图片展示和文字描述难以真实传达衣物的质地、颜色和尺寸。因此,虚拟试衣技术应运而生,成为电商平台上提升用户体验的
- 柳暗花明又一村:Seq2Seq编码器解码器架构
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
Seq2Seq,编码器-解码器,自然语言处理,机器翻译,文本生成,循环神经网络,长短期记忆网络1.背景介绍在人工智能领域,自然语言处理(NLP)始终是研究的热点之一。从机器翻译到文本摘要,从对话系统到问答机器人,Seq2Seq编码器-解码器架构在众多NLP任务中展现出强大的能力。传统的机器翻译方法通常依赖于统计模型和规则引擎,难以捕捉语言的复杂性和语义关系。随着深度学习的兴起,Seq2Seq架构为
- 《C++ 赋能 K-Means 聚类算法:开启智能数据分类之旅》
c++c#
在当今数字化浪潮汹涌澎湃的时代,人工智能无疑是引领科技变革的核心驱动力之一。而在人工智能的广袤天地中,数据分类与聚类作为挖掘数据内在价值、揭示数据潜在规律的关键技术手段,正发挥着前所未有的重要作用。K-Means聚类算法,作为数据聚类领域的经典之作,以其简洁高效的特性而备受瞩目。当我们将目光聚焦于C++这一强大而高效的编程语言时,会发现它与K-Means聚类算法的结合犹如天作之合,能够为数据处理与
- 《解锁AI黑科技:数据分类聚类与可视化》
程序猿阿伟
人工智能科技分类
在当今数字化时代,数据如潮水般涌来,如何从海量数据中提取有价值的信息,成为了众多领域面临的关键挑战。人工智能(AI)技术的崛起,为解决这一难题提供了强大的工具。其中,能够实现数据分类与聚类,并以可视化形式展现的AI技术,正逐渐成为各行业数据分析和决策的核心力量。数据分类与聚类:AI的核心技能数据分类是将数据划分到预先定义好的类别中,就像把图书馆里的书籍按照不同学科分类摆放,方便读者查找。比如在垃圾
- AI大模型基于LLM的Agent架构图解
AI产品经理
人工智能深度学习语言模型学习
Agent定义Agent是什么?Agent是一种能够自主决策、采取行动以达到某种目标的实体。AIAgent的确定义:基于人工智能(尤其是大模型)技术,能够感知和理解环境,并采取行动以完成目标的智能实体。Agent能干什么?AIAgent主要依托LLM模型和具体的业务场景来调用相应的工具来完成任务目标,智能化程度和行业贴合度会更明显。典型案例有什么?智能核保应用,如果解决方案搭载AIAgent能力,
- 【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘灰色预测SVR人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- DeepSeek Janus-Pro:多模态AI模型的突破与创新
大模型之路
大模型(LLM)Deepseekdeepseekr1deepseekLLM强化学习
近年来,人工智能领域取得了显著的进展,尤其是在多模态模型(MultimodalModels)方面。多模态模型能够同时处理和理解文本、图像等多种类型的数据,极大地扩展了AI的应用场景。DeepSeek(DeepSeek-V3深度剖析:下一代AI模型的全面解读)公司最新发布的Janus-Pro模型,正是在这一领域的一次重大突破。本文将深入探讨Janus-Pro的技术特点、创新之处以及其在多模态任务中的
- 2025年编程AI工具概览
hawkol
人工智能
随着人工智能技术的飞速发展,编程AI工具在2025年已成为程序员和开发者的得力助手。这些工具不仅提高了编程效率,还在代码质量、自动化和创新性方面表现出显著优势。以下是一些在2025年备受推崇的编程AI工具:1.GitHubCopilotGitHubCopilot是由GitHub、OpenAl和Microsoft联合打造的一款高级代码生成和辅助工具。它基于OpenAl的Codex模型,能够理解自然语
- 简述web3.0前端开发的最简单三个步骤
飞机号Mrsfu223
web3区块链pythonjava开发语言
Web3.0是互联网的下一代前沿技术,包括人工智能,大数据和区块链都是这项技术的核心,Web3.0为用户提供了更为智能的互联网服务体验,该技术的核心要素为去中心化,也就是摆脱中心化的权力控制,能够让数据和各项交易通过网络里的各项节点来维护和验证,并不是通过中心化的机构或服务器控制各项节点,Web3有车有中心化,有户权益性,去信任化,互操作性这些特点,可以拥有更大的操作空间和可能性。去中心化是基于区
- .NET/C#大型项目研发必备(5)--Web服务/WebApi的负载均衡
DeveloperSharp
负载均衡负载均衡器webapi微服务
前言:本系列文章适合有初/中级.NET知识的同学阅读。(1)本系列文章,旨在讲述研发一个中大型项目所需要了解的一系列“基本构件”,并提供这些“基本构件”的【最简单】、【最快速】使用方法!!(并不深究技术原理)(2)通过阅读本系列文章,能让你在正规“项目研发”方面快速入门+进阶,并能达成“小团队构建大网站”的目的。(3)本系列文章采用的技术,已成功应用到人工智能、产业互联网、社区电商、游戏、金融风控
- 人工智能在药物研发中的应用 - 从靶点发现和化合物筛选:利用AI深度学习技术加速药物研发流程
AI_DL_CODE
人工智能深度学习药物研发deeplearning
摘要:本文探讨了人工智能(AI)在药物研发中的应用,强调了AI在加速药物发现、降低成本和提高成功率方面的重要性。文章概述了AI在药物靶点识别、化合物筛选、药物设计优化等方面的应用,并详细介绍了机器学习和深度学习的基本原理。通过一个实操案例,展示了如何利用AI技术对化合物数据进行分析,预测潜在的药物候选物。案例包括数据预处理、模型训练、评估和优化等步骤,证明了AI在提高药物研发效率和准确性方面的潜力
- pytorch实现循环神经网络
纠结哥_Shrek
pytorchrnn深度学习
人工智能例子汇总:AI常见的算法和例子-CSDN博客PyTorch提供三种主要的RNN变体:nn.RNN:最基本的循环神经网络,适用于短时依赖任务。nn.LSTM:长短时记忆网络,适用于长序列数据,能有效解决梯度消失问题。nn.GRU:门控循环单元,比LSTM计算更高效,适用于大部分任务。网络类型优势适用场景RNN计算简单,适用于短时序列语音、文本处理(短序列)LSTM适用于长序列,能记忆长期信息
- 无线通信与人工智能技术与发展年度总结
Loving_enjoy
实用技巧人工智能信息与通信
2024年,无线通信与人工智能技术取得了显著的进步和突破,这些技术的革新不仅推动了行业的数字化转型,还为全球经济的持续发展注入了新的活力。以下是对无线通信与人工智能技术在这一年发展的详细总结。####无线通信技术的飞速演进无线通信技术的历史可以追溯到19世纪末,意大利科学家马可尼成功实现无线电波传输,开启了无线通信的大门。然而,直到20世纪后期,无线通信技术才真正开始腾飞,从2G到5G不断演进,如
- 探索Labelbox:打造自定义标注应用的利器!
孔旭澜Renata
探索Labelbox:打造自定义标注应用的利器!去发现同类优质开源项目:https://gitcode.com/项目介绍Labelbox是一款专为企业级客户设计的高级数据标注工具。它允许用户构建自己的定制标注界面(编辑器),提供强大的API和SDK,以适应各种复杂的数据标注需求。无论你是人工智能研究者、数据科学家还是软件开发者,Labelbox都能帮助你高效、精准地处理你的数据。技术分析Label
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/pwd@192.168.0.5:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理