1、JVM相关的内存模型和结构、GC,class加载过程等简单介绍
基本概念
JDK : Java Development Kit,Java开发套件,包含java的开发和运行环境jre
JRE : Java Runtime Environment,Java的运行环境
JVM : Java Virtual Machine,java虚拟机, Java语言的一个非常重要的特点就是与平台的无关性。 而使用Java虚拟机是实现这一特点的关键。
GC :Garbage Collection,垃圾回收,Java虚拟机(JVM)垃圾回收器提供的一种用于在空闲时间不定时回收无任何对象引用的对象占据的内存空间的一种机制。
对象 :对象是类的一个实例(对象不是找个女朋友),有状态和行为。例如,一条狗是一个对象,它的状态有:颜色、名字、品种;行为有:摇尾巴、叫、吃等。
类 :类是一个模板,它描述一类对象的行为和状态。
JVM内存模型和结构
内存划分
java虚拟机按照运行时内存使用区域划分如图:
Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域都有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,有些区域则是依赖用户线程的启动和结束而建立和销毁。
一、程序计数器(Program Counter Register)
程序计数器就是记录当前线程执行程序的位置,改变计数器的值来确定执行的下一条指令,比如循环、分支、方法跳转、异常处理,线程恢复都是依赖程序计数器来完成。
Java虚拟机多线程是通过线程轮流切换并分配处理器执行时间的方式实现的。为了线程切换能恢复到正确的位置,每个程序计数器只能记录一个线程的行号,因此它是线程私有的。
如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是Native方法,这个计数器值则为空(Undefined)。此内存区域是唯一一个在Java虚拟机规范中没有规定任何OutOfMemoryError情况的区域。
二、java虚拟机栈(VM Stack)
java虚拟机栈是线程私有,生命周期与线程相同。创建线程的时候就会创建一个java虚拟机栈。
虚拟机执行java程序的时候,每个方法都会创建一个栈帧,栈帧存放在java虚拟机栈中,通过压栈出栈的方式进行方法调用。
栈帧又分为一下几个区域:局部变量表、操作数栈、动态连接、方法出口等。
局部变量表中存储着方法相关的局部变量,包括各种基本数据类型及对象的引用地址等,因此他有个特点:内存空间可以在编译期间就确定,运行时不再改变。
虚拟机栈定义了两种异常类型:StackOverFlowError(栈溢出)和OutOfMemoryError(内存溢出)。如果线程调用的栈深度大于虚拟机允许的最大深度,则抛出StackOverFlowError;不过大多数虚拟机都允许动态扩展虚拟机栈的大小,所以线程可以一直申请栈,直到内存不足时,抛出OutOfMemoryError。
java的8中基本类型的局部变量的值存放在虚拟机栈的局部变量表中,如果是引用型的变量,则只存储对象的引用地址。
注意:
- 当用户请求web服务器,每个请求开启一个线程负责用户的响应计算(每个线程分配一个虚拟机栈空间),如果并发量大时,可能会导致内存溢出(OutOfMemoneyError),可以适当的把每个虚拟机栈的大小适当调小一点,减少内存的使用量来提高系统的并发量。
- 当栈空间调小以后,又会引发方法调用深度的的问题。因为,每个方法都会生成一个栈帧,如果方法调用深度很深就意味着,栈里面存放大量的栈帧,可能导致栈内存溢出(StackOverFlowError)。
三、本地方法栈(Native Method Stack)
本地方法栈用于支持native方法的执行,存储了每个native方法的执行状态。本地方法栈和虚拟机栈他们的运行机制一致,唯一的区别是,虚拟机栈执行Java方法,本地方法栈执行native方法。在很多虚拟机中(如Sun的JDK默认的HotSpot虚拟机),会将虚拟机栈和本地方法栈一起使用。
本地方法:是非java语言实现的方法,例如,java调用C语言,来操作某些硬件信息。
四、堆(Heap):
堆是被所有线程共享的区域,实在虚拟机启动时创建的。堆里面存放的都是对象的实例(new 出来的对象都存在堆中)。
我们平常所说的垃圾回收,主要回收的就是堆区。为了提升垃圾回收的性能,又把堆分成两块区新生代(young)和年老代(old),更细一点划分新生代又可划分为Eden区和2个Survivor区(From Survivor和To Survivor)。
如下图结构:
- Eden:新创建的对象存放在Eden区
- From Survivor和To Survivor:保存新生代gc后还存活的对象。(使用复制算法,导致有一个Survivor空间浪费)Hotspot虚拟机新生代Eden和Survivor的大小比值为4:1,因为有两个Survivor,所以Eden:From Survivor:To Survivor比值为8:1:1。
- 老年代:对象存活时间比较长(经过多次新生代的垃圾收集,默认是15次)的对象则进入老年的。
当堆中分配的对象实例过多,且大部分对象都在使用,就会报内存溢出异常(OutOfMemoneyError)。
五、方法区(Method Area)
方法区存放了要加载的类的信息(如类名、修饰符等)、静态变量、构造函数、final定义的常量、类中的字段和方法等信息。方法区是全局共享的,在一定条件下也会被GC。当方法区超过它允许的大小时,就会抛出OutOfMemory:PermGen Space异常。
在Hotspot虚拟机中,这块区域对应持久代(Permanent Generation),一般来说,方法区上执行GC的情况很少,因此方法区被称为持久代的原因之一,但这并不代表方法区上完全没有GC,其上的GC主要针对常量池的回收和已加载类的卸载。在方法区上进行GC,条件相当苛刻而且困难.
运行时常量池(Runtime Constant Pool)是方法区的一部分,用于存储编译器生成的常量和引用。一般来说,常量的分配在编译时就能确定,但也不全是,也可以存储在运行时期产生的常量。比如String类的intern()方法,作用是String类维护了一个常量池,如果调用的字符"hello"已经在常量池中,则直接返回常量池中的地址,否则新建一个常量加入池中,并返回地址。
java8中已经没有方法区了,取而代之的是元空间(Metaspace)。
六:直接内存
直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是Java虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用,而且也可能导致OutOfMemoryError异常出现。
JDK1.4加的NIO中,ByteBuffer有个方法是allocateDirect(int capacity) ,这是一种基于通道(Channel)与缓冲区(Buffer)的I/O方式,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在Java堆里面的DirectByteBuffer对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java堆和Native堆中来回复制数据。
参考链接:https://www.jianshu.com/p/a60d6ef0771b
GC 机制
随着程序的运行,内存中的实例对象、变量等占据的内存越来越多,如果不及时进行回收,会降低程序运行效率,甚至引发系统异常。
在上面介绍的五个内存区域中,有3个是不需要进行垃圾回收的:本地方法栈、程序计数器、虚拟机栈。因为他们的生命周期是和线程同步的,随着线程的销毁,他们占用的内存会自动释放。所以,只有方法区和堆区需要进行垃圾回收,回收的对象就是那些不存在任何引用的对象。
GC机制的基本算法是:分代收集,这个不用赘述。下面阐述每个分代的收集方法。
年轻代:
在新生代中,使用“停止-复制”算法进行清理,将新生代内存分为2部分,1部分 Eden区较大,1部分Survivor比较小,并被划分为两个等量的部分。每次进行清理时,将Eden区和一个Survivor中仍然存活的对象拷贝到 另一个Survivor中,然后清理掉Eden和刚才的Survivor。
这里也可以发现,停止复制算法中,用来复制的两部分并不总是相等的(传统的停止复制算法两部分内存相等,但新生代中使用1个大的Eden区和2个小的Survivor区来避免这个问题)
由于绝大部分的对象都是短命的,甚至存活不到Survivor中,所以,Eden区与Survivor的比例较大,HotSpot默认是 8:1,即分别占新生代的80%,10%,10%。如果一次回收中,Survivor+Eden中存活下来的内存超过了10%,则需要将一部分对象分配到 老年代。用-XX:SurvivorRatio参数来配置Eden区域Survivor区的容量比值,默认是8,代表Eden:Survivor1:Survivor2=8:1:1.
老年代:
老年代存储的对象比年轻代多得多,而且不乏大对象,对老年代进行内存清理时,如果使用停止-复制算法,则相当低效。一般,老年代用的算法是标记-整理算法,即:标记出仍然存活的对象(存在引用的),将所有存活的对象向一端移动,以保证内存的连续。
在发生Minor GC时,虚拟机会检查每次晋升进入老年代的大小是否大于老年代的剩余空间大小,如果大于,则直接触发一次Full GC,否则,就查看是否设置了-XX:+HandlePromotionFailure(允许担保失败),如果允许,则只会进行MinorGC,此时可以容忍内存分配失败;如果不允许,则仍然进行Full GC(这代表着如果设置-XX:+Handle PromotionFailure,则触发MinorGC就会同时触发Full GC,哪怕老年代还有很多内存,所以,最好不要这样做)。
方法区(永久代):
永久代的回收有两种:常量池中的常量,无用的类信息,常量的回收很简单,没有引用了就可以被回收。对于无用的类进行回收,必须保证3点:
- 类的所有实例都已经被回收
- 加载类的ClassLoader已经被回收
- 类对象的Class对象没有被引用(即没有通过反射引用该类的地方)
永久代的回收并不是必须的,可以通过参数来设置是否对类进行回收。HotSpot提供-Xnoclassgc进行控制
使用-verbose,-XX:+TraceClassLoading、-XX:+TraceClassUnLoading可以查看类加载和卸载信息
-verbose、-XX:+TraceClassLoading可以在Product版HotSpot中使用;
-XX:+TraceClassUnLoading需要fastdebug版HotSpot支持
类加载机制
如下图所示,JVM类加载机制分为五个部分:加载,验证,准备,解析,初始化,下面我们就分别来看一下这五个过程。
1、加载
加载是类加载过程中的一个阶段,这个阶段会在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的入口。注意这里不一定非得要从一个Class文件获取,这里既可以从ZIP包中读取(比如从jar包和war包中读取),也可以在运行时计算生成(动态代理),也可以由其它文件生成(比如将JSP文件转换成对应的Class类)。
站在Java开发人员的角度来看,类加载器可以大致划分为以下三类:
- 启动类加载器:
Bootstrap ClassLoader,跟上面相同。它负责加载存放在JDK\jre\lib(JDK代表JDK的安装目录,下同)下,或被-Xbootclasspath参数指定的路径中的,并且能被虚拟机识别的类库(如rt.jar,所有的java.*开头的类均被Bootstrap ClassLoader加载)。启动类加载器是无法被Java程序直接引用的。 - 扩展类加载器:
Extension ClassLoader,该加载器由sun.misc.Launcher$ExtClassLoader实现,它负责加载JDK\jre\lib\ext目录中,或者由java.ext.dirs系统变量指定的路径中的所有类库(如javax.*开头的类),开发者可以直接使用扩展类加载器 - 应用程序类加载器:
Application ClassLoader,该类加载器由sun.misc.Launcher$AppClassLoader来实现,它负责加载用户类路径(ClassPath)所指定的类,开发者可以直接使用该类加载器,如果应用程序中没有自定义过自己的类加载器,一般情况下这个就是程序中默认的类加载器。
JVM通过双亲委派模型进行类的加载,当然我们也可以通过继承java.lang.ClassLoader实现自定义的类加载器。
当一个类加载器收到类加载任务,会先交给其父类加载器去完成,因此最终加载任务都会传递到顶层的启动类加载器,只有当父类加载器无法完成加载任务时,才会尝试执行加载任务。
采用双亲委派的一个好处是比如加载位于rt.jar包中的类java.lang.Object,不管是哪个加载器加载这个类,最终都是委托给顶层的启动类加载器进行加载,这样就保证了使用不同的类加载器最终得到的都是同样一个Object对象。
2、验证
验证的目的是为了确保Class文件中的字节流包含的信息符合当前虚拟机的要求,而且不会危害虚拟机自身的安全。不同的虚拟机对类验证的实现可能会有所不同,但大致都会完成以下四个阶段的验证:文件格式的验证、元数据的验证、字节码验证和符号引用验证。
- 文件格式的验证:
验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理,该验证的主要目的是保证输入的字节流能正确地解析并存储于方法区之内。经过该阶段的验证后,字节流才会进入内存的方法区中进行存储,后面的三个验证都是基于方法区的存储结构进行的。 - 元数据验证:
对类的元数据信息进行语义校验(其实就是对类中的各数据类型进行语法校验),保证不存在不符合Java语法规范的元数据信息。 - 字节码验证:
该阶段验证的主要工作是进行数据流和控制流分析,对类的方法体进行校验分析,以保证被校验的类的方法在运行时不会做出危害虚拟机安全的行为。 - 符号引用验证:
这是最后一个阶段的验证,它发生在虚拟机将符号引用转化为直接引用的时候(解析阶段中发生该转化,后面会有讲解),主要是对类自身以外的信息(常量池中的各种符号引用)进行匹配性的校验。
3、准备
准备阶段是正式为类变量分配内存并设置类变量初始值的阶段,这些内存都将在方法区中分配。对于该阶段有以下几点需要注意:
- 这时候进行内存分配的仅包括类变量(static),而不包括实例变量,实例变量会在对象实例化时随着对象一块分配在Java堆中。
- 这里所设置的初始值通常情况下是数据类型默认的零值(如0、0L、null、false等),而不是被在Java代码中被显式地赋予的值。
4、解析
解析阶段是指虚拟机将常量池中的符号引用替换为直接引用的过程。
解释一下符号引用和直接引用的概念:
- 符号引用与虚拟机实现的布局无关,引用的目标并不一定要已经加载到内存中。各种虚拟机实现的内存布局可以各不相同,但是它们能接受的符号引用必须是一致的,因为符号引用的字面量形式明确定义在Java虚拟机规范的Class文件格式中。
- 直接引用可以是指向目标的指针,相对偏移量或是一个能间接定位到目标的句柄。如果有了直接引用,那引用的目标必定已经在内存中存在。
5、初始化
初始化是类加载过程的最后一步,到了此阶段,才真正开始执行类中定义的Java程序代码。在准备阶段,类变量已经被赋过一次系统要求的初始值,而在初始化阶段,则是根据程序员通过程序指定的主观计划去初始化类变量和其他资源,或者可以从另一个角度来表达:初始化阶段是执行类构造器
参考链接:http://www.importnew.com/25295.html
https://blog.csdn.net/ns_code/article/details/17881581
数据类型
一、基本数据类型
Java基本类型共有八种,基本类型可以分为四类,字符类型char,布尔类型boolean以及数值类型byte、short、int、long、float、double。数值类型又可以分为整数类型byte、short、int、long和浮点数类型float、double。JAVA中的数值类型不存在无符号的,它们的取值范围是固定的,不会随着机器硬件环境或者操作系统的改变而改变。
基本类型的分类以及他们对应的包装类:
- 整数型: byte (java.lang.Byte) 、short (java.lang.Short)、 int (java.lang.Integer)、 long (java.lang.Long)
- 浮点型: float (java.lang.Float)、 double (java.lang.Double)
- 布尔型: boolean (java.lang.Boolean)
- 字符型: char (java.lang.Character)
序号 | 数据类型 | 大小/位 | 封装类 | 默认值 | 可表示数据范围 |
---|---|---|---|---|---|
1 | byte(位) | 8 | Byte | 0 | -128~127 |
2 | short(短整数) | 16 | Short | 0 | -32768~32767 |
3 | int(整数) | 32 | Integer | 0 | -2147483648~2147483647 |
4 | long(长整数) | 64 | Long | 0L | -9223372036854775808~9223372036854775807 |
5 | float(单精度) | 32 | Float | 0.0F | 1.4E-45~3.4028235E38 |
6 | double(双精度) | 64 | Double | 0.0D | 4.9E-324~1.7976931348623157E308 |
7 | char(字符) | 16 | Character | 空 | 0~65535 |
8 | boolean | 8 | Boolean | flase | true或false |
boolean t = true;
boolean f = false;
char c = '1';
char d; //局部变量需要初始化值,否则会编译报错
System.out.println(c + 0); //输出49
对于数值类型的基本类型的取值范围,我们无需强制去记忆,因为它们的值都已经以常量的形式定义在对应的包装类中了。
基本类型存储在栈中,因此它们的存取速度要快于存储在堆中的对应包装类的实例对象
所有基本类型(包括void)的包装类都使用了final修饰,因此我们无法继承它们扩展新的类,也无法重写它们的任何方法。
- 基本类型的优势:数据存储相对简单,运算效率比较高。
- 包装类的优势:自带方法丰富,集合的元素必须是对象类型,体现了Java一切皆是对象的思想。
public static void main(String[] args) {
Integer a = 1;
Integer b = 1;
System.out.println(a==b); //结果为true
Integer c = 200;
Integer d = 200;
System.out.println(c==d); //结果为false
}
拆箱
将包装类变为基本数据类型,例如
Integer i = 2;
int j = i;
参考连接:https://blog.csdn.net/bingduanlbd/article/details/27790287
https://blog.csdn.net/thebigdipperbdx/article/details/81047288
二、String是基本的数据类型吗?
String不是基本数据类型,而是一个类(class),是Java编程语言中的字符串。String对象是char的有序集合,并且该值是不可变的。因为java.lang.String类是final类型的,因此不可以继承这个类、不能修改这个类。为了提高效率节省空间,我们应该用StringBuffer类(线程安全),或者StringBuilder(非线程安全)。
java 中String 是个对象,是引用类型
- 基础类型与引用类型的区别是,基础类型只表示简单的字符或数字,引用类型可以是任何复杂的数据结构
- 基本类型仅表示简单的数据类型,引用类型可以表示复杂的数据类型,还可以操作这种数据类型的行为
- java虚拟机处理基础类型与引用类型的方式是不一样的,对于基本类型,java虚拟机会为其分配数据类型实际占用的内存空间,而对于引用类型变量,他仅仅是一个指向堆区中某个实例的指针。
不能用“==”去判断两个String是否相等
特点一:String常量也是对象,在加载期就被产生,放到数据段的字符串常量池当中。
特点二:String对象一旦产生,内容不可更改;每次改变都是产生了一个新的对象,这个特点导致了String的效率不高(做字符串拼接的时候,每次拼接都要产生新的String对象)
String s1 = "hello";
String s2 = new String("hello");
System.out.println(s1 == s2); //结果是false
System.out.println(s1.equals(s2)); //结果是true
1,S1首先查看字符串 abc 是否存在字符串常量池中,如果存在则直接指向,不存在,则创建一个
2,S2 查看常量池中 abc 是否存在,结果已经存在了,就直接指向引用了
区别:
- 前者s1 创建了两个对象 堆内存中的new String 和 字符串常量区的 abc
- s2只创建了一个对象 abc 如果存在 abc 那就一个对象也没创建
同时 String s = "abc";
字符串 abc作为一个对象也可以调用String类的方法
访问控制
public:
具有最大的访问权限,可以访问任何一个在classpath下的类、接口、异常等。它往往用于对外的情况,也就是对象或类对外的一种接口的形式。
protected:
主要的作用就是用来保护子类的。它的含义在于子类可以用它修饰的成员,其他的不可以,它相当于传递给子类的一种继承的东西
default:
有时候也称为friendly,它是针对本包访问而设计的,任何处于本包下的类、接口、异常等,都可以相互访问,即使是父类没有用protected修饰的成员也可以。
private:
访问权限仅限于类的内部,是一种封装的体现,例如,大多数成员变量都是修饰符为private的,它们不希望被其他任何外部的类访问。
public class PublicTest {
//public 标记了这个方法可以被开放调用,不受地点限制
//static 标记了这个方法为static静态的,随着class被初始化,可以通过类直接调用
//void 标记了这个方法的返回为void或者不需要手动返回执行结果
public static void launchNuclearBomb(String operateParam) {
System.out.println("BOMB !");
}
protected static void sayHello(String name) {
System.out.println("hello , " + name);
}
//String 标记这个方法执行完了需要给调用方返回一个类型为String 的对象
private String getDate(){
return new Date().toString();
}
}
流程控制
if else
Integer a = 2;
if(a > 1){
System.out.println("a > 1");
}else{
System.out.println("a < 1");
}
for
for (int i = 0; i < 10; i++) {
System.out.println(i);
}
whlie
int count = 0;
while (count < 10){
System.out.println(count);
count ++; //count = count + 1
}
switch case
public class Test {
public static void main(String args[]){
//char grade = args[0].charAt(0);
char grade = 'C';
switch(grade)
{
case 'A' :
System.out.println("优秀");
break;
case 'B' :
case 'C' :
System.out.println("良好");
break;
case 'D' :
System.out.println("及格");
break;
case 'F' :
System.out.println("你需要再努力努力");
break;
default :
System.out.println("未知等级");
}
System.out.println("你的等级是 " + grade);
}
}