Python集成学习算法教程

Python

Python由荷兰数学和计算机科学研究学会的吉多·范罗苏姆于1990年代初设计,作为一门叫做ABC语言的替代品。 Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言, 随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。

Python在各个编程语言中比较适合新手学习,Python解释器易于扩展,可以使用C语言或C++(或者其他可以通过C调用的语言)扩展新的功能和数据类型。 Python也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。

近年来,Python编程语言受到越来越多科研人员的喜爱,在多个编程语言排行榜中持续夺冠。同时,伴随着深度学习的快速发展,人工智能技术在各个领域中的应用越来越广泛。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。

Python集成学习算法

(1)Baggingvs.Boosting集成策略

(2)决策树与随机森林模型

(3)Adaboost算法

(4)梯度提升决策树(Gradient-based Decision Tree,GBDT)

(5)XGBoost and LightGBM

阅读全文点击《Python集成学习算法教程》

你可能感兴趣的:(python,python,集成学习,机器学习,开发语言,Adaboost算法,决策树,随机森林模型)