- Spark 解析_spark.sparkContext.getConf().getAll()
闯闯桑
spark大数据分布式
spark.sparkContext.getConf().getAll()是ApacheSpark中的一段代码,用于获取当前Spark应用程序的所有配置项及其值。以下是逐部分解释:代码分解:spark:这是一个SparkSession对象,它是Spark应用程序的入口点,用于与Spark集群进行交互。spark.sparkContext:sparkContext是Spark的核心组件,负责与集群通
- MongoDB数据库使用及常见问题
微笑的曙光(StevenLi)
数据库数据库mongodb
MongoDB数据库之所以备受青睐,关键在于其独特的优势满足了现代应用的需求。它采用文档型存储,数据结构灵活,无需事先定义表结构,非常适合处理复杂且多变的数据。MongoDB具备高性能和可扩展性,能够轻松应对大数据量和高并发的访问,通过分片技术实现水平扩展,确保系统稳定运行。同时,它提供了强大的数据一致性和可靠性保障,支持多种复制和故障转移机制,确保数据的高可用性和持久性。此外,MongoDB拥有
- 智慧社区2.0
陈陈爱java
java
项目亮点1.技术架构层面✅多数据源整合(MySQL+Redis+HDFS+OSS)核心亮点:不仅仅是单一数据库,而是根据数据特性使用MySQL(结构化数据)+Redis(缓存)+HDFS(大数据存储)+OSS(对象存储),提高了系统的数据存储效率和查询速度。面试时可以强调:Redis作为缓存,加速社区热点数据访问,减少MySQL压力。HDFS存储海量日志和AI任务数据,支持后续分析。OSS解决图片
- Pandas与PySpark混合计算实战:突破单机极限的智能数据处理方案
Eqwaak00
Pandaspandas学习python科技开发语言
引言:大数据时代的混合计算革命当数据规模突破十亿级时,传统单机Pandas面临内存溢出、计算缓慢等瓶颈。PySpark虽能处理PB级数据,但在开发效率和局部计算灵活性上存在不足。本文将揭示如何构建Pandas+PySpark混合计算管道,在保留Pandas便捷性的同时,借助Spark分布式引擎实现百倍性能提升,并通过真实电商用户画像案例演示全流程实现。一、混合架构设计原理1.1技术栈优势分析维度P
- 谷粒商城学习笔记,第七天:性能压测+缓存+分布式锁
「已注销」
数据库分布式redisjava多线程
谷粒商城学习笔记,第七天:性能压测+缓存+分布式锁一、性能压测我们希望通过压测发现其他测试更难发现的错误:内存泄漏、并发与同步。1、性能指标吞吐量、响应时间QPSTPS、错误率RT:ResponseTime响应时间HPS:hitspersecond每秒点击次数TPS:Transactionpersecond系统每秒处理交易数QPS:querypersecond每秒处理查询次数2、JMeter下载地
- DeepSeek 3FS 与 JuiceFS:架构与特性比较
运维人工智能
近期,DeepSeek开源了其文件系统Fire-FlyerFileSystem(3FS),使得文件系统这一有着70多年历时的“古老”的技术,又获得了各方的关注。在AI业务中,企业需要处理大量的文本、图像、视频等非结构化数据,还需要应对数据量的爆炸式增长,分布式文件系统因此成为AI训练的关键存储技术。本文旨在通过深入分析3FS的实现机制,并与JuiceFS进行对比,以帮助用户理解两种文件系统的区别及
- HarmonyNext实战:基于ArkTS的分布式任务调度系统开发
harmonyos
HarmonyNext实战:基于ArkTS的分布式任务调度系统开发引言在HarmonyNext生态系统中,分布式任务调度是一个复杂且关键的需求。无论是大规模数据处理,还是多设备协同计算,都需要高效、可靠的任务调度机制。本文将深入探讨如何基于ArkTS设计和实现一个分布式任务调度系统,适配HarmonyNext,并满足实际工程中的高性能和高可靠性需求。本文面向有一定开发经验的读者,假设您已经熟悉Ha
- 分布式电商项目 谷粒商城 学习笔记<4>
怎么又有bug单
SpringBoot分布式java开发语言阿里压力测试
文章目录十五、压力测试1.一些基本概念2.JVM内存机制3.压测记录4.Nginx动静分离5.优化三级分类查询十六、redisson分布式锁与缓存1.概念2.redis3.缓存失效缓存穿透缓存雪崩缓存击穿互斥锁:4.缓存击穿如何复制微服务:5.分布式缓存概念原则基本流程6.Redisson环境搭建可重入锁锁的续期读写锁信号量(Semaphore)闭锁7.缓存和数据库一致性十五、压力测试这里是使用j
- 鸿蒙Next开发与未来发展的变革:全场景操作系统的全新纪元
北辰alk
鸿蒙harmonyos华为
文章目录引言:从兼容到自主的跨越式进化一、鸿蒙Next技术架构解析1.1系统架构全景图1.1.1微内核架构优势1.2与OpenHarmony的关系二、开发范式革命2.1应用开发模式对比2.1.1元服务(MetaService)定义2.2开发工具链升级(DevEcoStudio4.0)2.2.1核心功能增强2.2.2工程结构变革三、关键技术突破3.1方舟编译器深度优化3.2分布式能力增强3.2.1设
- 自定义Spark启动的metastore_db和derby.log生成路径
节昊文
spark大数据分布式
1.进入安装spark目录的conf目录下2.复制spark-defaults.conf.template文件为spark-defaults.conf3.在spark-defaults.conf文件的末尾添加一行:spark.driver.extraJavaOptions-Dderby.system.home=/log即生成的文件存放的目录
- GraphQL 联邦架构:构建可扩展的分布式 API 生态系统
全栈探索者chen
知识分享graphql架构分布式开发语言缓存后端性能优化
GraphQL联邦架构:构建可扩展的分布式API生态系统前言随着微服务架构在企业级应用中的广泛应用,各个服务需要独立演进与部署,API层的设计逐渐成为开发者面临的重要挑战。GraphQL作为一种灵活的数据查询语言,已经在许多项目中取代了传统RESTfulAPI。然而,当业务不断增长、服务拆分越来越细粒度时,单一GraphQL服务往往难以满足扩展性和独立部署的需求。为了解决这一问题,GraphQL联
- 智能汽车:驶向未来的革命
智能设备
一、引言汽车,作为现代文明的标志,正经历着一场前所未有的变革。人工智能、大数据、云计算等技术的飞速发展,正推动着汽车从单纯的交通工具向智能移动空间转变。智能汽车,作为这场变革的主角,正悄然改变着我们的出行方式和生活方式。二、智能汽车的定义与发展现状智能汽车,是指搭载先进传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与X(人、车、路、云端等)智能信息交换、共享,具备复杂环境感知、智能
- 介绍 Apache Spark 的基本概念和在大数据分析中的应用
佛渡红尘
apache
ApacheSpark是一个开源的集群计算框架,最初由加州大学伯克利分校的AMPLab开发,用于大规模数据处理和分析。相比于传统的MapReduce框架,Spark具有更快的数据处理速度和更强大的计算能力。ApacheSpark的基本概念包括:弹性分布式数据集(RDD):是Spark中基本的数据抽象,是一个可并行操作的分区记录集合。RDD可以在集群中的节点间进行分布式计算。转换(Transform
- 从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
Echo_Wish
大数据大数据hadoopspark
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路说起大数据技术,Hadoop和Spark可以说是这个领域的两座里程碑。Hadoop曾是大数据的开山之作,而Spark则带领我们迈入了一个高效、灵活的大数据处理新时代。那么,它们的演变过程到底有何深意?背后技术上的取舍和选择,又意味着什么?一、Hadoop:分布式存储与计算的奠基者Hadoop诞生于互联网流量爆发式增长的时代,
- 最新计算机专业毕设论文选题大全基于BeautifulSoup的毕业设计详细题目100套优质毕设项目分享(源码+论文)✅
会写代码的羊
毕设选题课程设计beautifulsoup毕业设计毕业设计题目毕设题目python网络爬虫
文章目录前言最新毕设选题(建议收藏起来)基于BeautifulSoup的毕业设计选题毕设作品推荐前言2025全新毕业设计项目博主介绍:✌全网粉丝10W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者。技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、大数据、机器学习等设计与开发。主要内容:免费
- 实现RPC框架的流量控制与限流策略
AI天才研究院
计算编程实践架构师必知必会系列计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍实现RPC框架的流量控制与限流策略作者:禅与计算机程序设计艺术1.背景介绍1.1RPC简介RPC(RemoteProcedureCall),即远程过程调用,是一种常见的分布式系统中的通信方式。它允许程序员像调用本地函数一样去调用网络上位于其他机器上的函数。RPC通过将参数序列化为消息,然后发送到服务器上执行相应的函数,最后将结果反序列化返回给客户端。1.2流量控制与限流策略在分布式系统
- Flume详解——介绍、部署与使用
克里斯蒂亚诺罗纳尔多阿维罗
flume大数据分布式
1.Flume简介ApacheFlume是一个专门用于高效地收集、聚合、传输大量日志数据的分布式、可靠的系统。它特别擅长将数据从各种数据源(如日志文件、消息队列等)传输到HDFS、HBase、Kafka等大数据存储系统。特点:可扩展:支持大规模数据传输,灵活扩展容错性:支持数据恢复和失败重试,确保数据不丢失多种数据源:支持日志文件、网络数据、HTTP请求、消息队列等多种来源流式处理:数据边收集边传
- 智能租赁系统助力数字化转型提升管理效率与服务质量
红点租赁系统开发
其他
内容概要在当今快速发展的商业环境中,智能租赁系统正如一位得力助手,帮助企业以数字化的方式提升管理效率与服务质量。想象一下,传统的租赁管理就像是一场需要精确时间安排的舞蹈,而智能租赁系统则提供了高科技的音响设备,让整个表演流畅无比。通过先进的数字技术,比如云计算和大数据分析,这些系统能够优化资源配置,让企业的每一分钱都花得物有所值。更妙的是,智能租赁系统不仅高效处理日常事务,还能提供精确的数据分析,
- 金融租赁系统智慧风控实践探索
红点租赁系统开发
其他
内容概要当传统金融租赁还在和纸质合同较劲时,兴业金融租赁系统已经玩起了"变形金刚式"的智慧风控。这套系统就像给资产装上了GPS定位器+心电图监测仪,通过物联网传感器实时捕捉设备运行数据,配合卫星定位追踪车辆轨迹,再让大数据分析引擎消化海量场景信息——从工地的混凝土搅拌频率到物流车队的急刹车次数,全被转化成可量化的风险坐标。技术手段业务指标提升应用场景案例物联网传感器异常响应速度提升70%工程机械油
- 【后端开发面试题】每日 3 题(十五)
Pandaconda 的测开之路
#后端开发面试专栏面试后端后端开发分布式数据库幂等性python
✍个人博客:Pandaconda-CSDN博客专栏地址:https://blog.csdn.net/newin2020/category_12903849.html专栏简介:在这个专栏中,我将会分享后端开发面试中常见的面试题给大家,每天的题目都是独立且随机的,之前的面试题不会影响接下来的学习~❤️如果有收获的话,欢迎点赞收藏,您的支持就是我创作的最大动力题目1:什么是分布式锁?它的使用场景是什么?
- HarmonyOS Next深度解析:从技术架构到实践应用
披光人
harmonyOSharmonyos架构华为
HarmonyOSNext作为华为最新一代的分布式操作系统,不仅在技术架构上进行了全面的革新,还在实际应用场景中展现了强大的潜力。对于有一定开发基础的开发者来说,深入理解HarmonyOSNext的技术细节和实际应用方法,是掌握鸿蒙开发的关键。本文将从技术架构、最新技术分析以及开发实践三个方面,详细解析HarmonyOSNext的核心技术和应用场景,帮助开发者快速上手并高效开发。一、Harmony
- 在kali linux中配置hadoop伪分布式
we19a0sen
三数据分析分布式linuxhadoop
目录一.配置静态网络二.配置主机名与IP地址映射三.配置SSH免密登录四.配置Java和Hadoop环境五.配置Hadoop伪分布式六.启动与验证一.配置静态网络原因:Hadoop集群依赖稳定的网络通信,动态IP可能导致节点失联。静态IP确保节点始终通过固定地址通信。操作步骤:#修改网络配置文件sudovim/etc/network/interfaces#添加内容(根据实际网络修改):autoet
- Java集成MQTT和Kafka实现稳定、可靠、高性能的物联网消息处理系统
qzw1210
javakafka物联网
Java集成MQTT和Kafka实现高可用方案1.概述在物联网(IoT)和分布式系统中,消息传递的可靠性和高可用性至关重要。本文将详细介绍如何使用Java集成MQTT和Kafka来构建一个高可用的消息处理系统。MQTT(消息队列遥测传输)是一种轻量级的发布/订阅协议,适用于资源受限的设备和低带宽、高延迟网络。而Kafka是一个分布式流处理平台,提供高吞吐量、可扩展性和持久性。将两者结合,可以创建一
- 07-单链表-单链表基本操作
哆啦A梦阳
2025算法机试算法数据结构
题目来源826.单链表-AcWing题库思路详见代码,主要思想就是用数组来模拟链表的创建。数组其实跟静态链表等价,由于动态链表动态new对于大数据太过于耗时,因此采用数组的方式。那数组如何起到链表的效果?用下标来索引。代码#includeusingnamespacestd;constintN=100010;inthead,e[N],ne[N],idx;//初始化voidinit(){head=-1
- 如果我想成为一名大数据和算法工程师,我需要学会哪些技能,获取大厂的offer
红豆和绿豆
杂谈大数据算法
成为一名大数据和算法工程师并获取大厂Offer,需要掌握一系列核心技能,并具备丰富的项目经验与扎实的理论基础。以下是详细的技能要求和建议:---###**1.数学与理论基础**-**数学知识**:掌握线性代数、微积分、概率论和统计学,这些是设计和理解算法的基础。-**机器学习理论**:深入理解常见机器学习算法(如线性回归、逻辑回归、决策树、随机森林、SVM、K-means等),了解其原理、优缺点及
- KVM 内核优化全攻略:全方位释放服务器性能
TechStack 创行者
KVMLinux服务器运维KVM
KVM内核优化全攻略:全方位释放服务器性能在云计算、大数据、人工智能等前沿技术蓬勃发展的当下,服务器性能面临着前所未有的挑战。KVM(Kernel-basedVirtualMachine)作为开源虚拟化解决方案,凭借高效稳定的特性,广泛应用于企业数据中心。要充分发挥KVM性能优势,对其内核进行全面优化势在必行。本文将为你详细介绍一套涵盖通用优化及其他关键优化点的完整KVM内核优化方案,并结合实际案
- Hive 与 SparkSQL 的语法差异及性能对比
自然术算
Hivehivehadoop大数据spark
在大数据处理领域,Hive和SparkSQL都是极为重要的工具,它们为大规模数据的存储、查询和分析提供了高效的解决方案。虽然二者都致力于处理结构化数据,并且都采用了类似SQL的语法来方便用户进行操作,但在实际使用中,它们在语法细节和性能表现上存在诸多差异。了解这些差异,对于开发者根据具体业务场景选择合适的工具至关重要。语法差异数据定义语言(DDL)表创建语法Hive:在Hive中创建表时,需要详细
- Java 分布式高并发重试方案及实现
可乐加.糖
java分布式开发语言springbootredis
文章目录Java分布式高并发重试方案及实现一、重试机制的背景和意义二、基于SpringBoot的重试方案实现1.使用SpringRetry实现重试机制添加依赖开启重试功能定义重试逻辑使用重试服务2.使用Fast-Retry实现高性能重试引入依赖编程式重试注解式重试三、重试机制的注意事项四、总结Java分布式高并发重试方案及实现在分布式系统中,高并发场景下接口调用的稳定性至关重要。为了应对接口调用失
- 《论分布式系统架构设计及其应用》架构师论文
文琪小站
系统架构师系统架构设计师软考论文
【摘要】2022年3月,我参与了某金融科技公司“智能风控云平台”项目的研发工作,担任系统架构师职务,负责分布式系统架构设计与核心技术选型。该平台旨在为银行、保险等金融机构提供实时风险评估、反欺诈及数据服务,需支撑每秒十万级并发请求并满足毫秒级响应要求。项目采用微服务架构风格,融合事件驱动、服务网格及分布式数据存储技术,解决了高可用性、弹性扩展及数据一致性等核心问题。本文通过实际案例论证分布式架构设
- token升级(考虑在分布式环境中布置token,结合session保证请求调用过程中token不会过期。)
推荐爱你Jonah
分布式redisjava
思路:首先,用户的需求是确保使用同一个Token的外部调用都在一个Session中处理。之前的回答提到了Token与Session绑定、安全措施、Session管理、分布式处理等。现在需要用Java来展示这些步骤。我需要考虑Java中常用的框架,比如SpringBoot,因为它广泛用于API开发。同时,使用Redis作为Session存储,这在Java中通常通过SpringDataRedis或Le
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟