主页地址:某99网站
查看启动器发现有一个NDUser_Login.js
文件的匿名方法,点进去查看
点进去后发现,此处拼接了一个登录的地址,并且上方会赋值password
和aws
,大概率是在此处进行的加密。下断点,再次登录。
发现可以断住,所以此处就是加密位置
通过定位到的加密位置,扣出加密代码,缺啥补啥即可。
aws
是可以写死的,每次生成的都是一样的。
通过断点进入password
的加密方法,发现是加盐的md5,通过控制台测试字符串’1’,可以看出时标准的md5
但是当我使用标准的md5加密加盐后的字符串时,却发现与网站加密出的密文不同
所以此处要将网站使用的MD5算法扣出,不能使用标准的md5
通过不断点击图片验证码可以看出,网站每次获取验证码都会发送三个请求
通过观察这三个请求可以发现,第二个请求会携带第一个请求返回响应中的ticket
,第二个请求返回的响应中有第三个请求的地址。
首先我们需要先请求图片验证码的第一个接口,获取到ticket
,再携带ticket
请求第二个接口获取到图片验证码的地址,请求该地址获取到图片,破解图片验证码(我使用的是打码平台)。生成加密参数,携带加密参数以及图片验证码请求登录接口。注意:以上请求均需要携带参数callback
,写死即可。
JavaScript源码:
var CryptoJS = require('crypto-js')
var hex_chr = "0123456789abcdef";
function rhex(num) {
str = "";
for (j = 0; j <= 3; j++)
str += hex_chr.charAt((num >> (j * 8 + 4)) & 0x0F) + hex_chr.charAt((num >> (j * 8)) & 0x0F);
return str;
}
function str2blks_MD5(str) {
nblk = ((str.length + 8) >> 6) + 1;
blks = new Array(nblk * 16);
for (i = 0; i < nblk * 16; i++)
blks[i] = 0;
for (i = 0; i < str.length; i++)
blks[i >> 2] |= str.charCodeAt(i) << ((i % 4) * 8);
blks[i >> 2] |= 0x80 << ((i % 4) * 8);
blks[nblk * 16 - 2] = str.length * 8;
return blks;
}
function add(x, y) {
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
return (msw << 16) | (lsw & 0xFFFF);
}
function rol(num, cnt) {
return (num << cnt) | (num >>> (32 - cnt));
}
function cmn(q, a, b, x, s, t) {
return add(rol(add(add(a, q), add(x, t)), s), b);
}
function ff(a, b, c, d, x, s, t) {
return cmn((b & c) | ((~b) & d), a, b, x, s, t);
}
function gg(a, b, c, d, x, s, t) {
return cmn((b & d) | (c & (~d)), a, b, x, s, t);
}
function hh(a, b, c, d, x, s, t) {
return cmn(b ^ c ^ d, a, b, x, s, t);
}
function ii(a, b, c, d, x, s, t) {
return cmn(c ^ (b | (~d)), a, b, x, s, t);
}
function MD5(str) {
x = str2blks_MD5(str);
var a = 1732584193;
var b = -271733879;
var c = -1732584194;
var d = 271733878;
for (i = 0; i < x.length; i += 16) {
var olda = a;
var oldb = b;
var oldc = c;
var oldd = d;
a = ff(a, b, c, d, x[i + 0], 7, -680876936);
d = ff(d, a, b, c, x[i + 1], 12, -389564586);
c = ff(c, d, a, b, x[i + 2], 17, 606105819);
b = ff(b, c, d, a, x[i + 3], 22, -1044525330);
a = ff(a, b, c, d, x[i + 4], 7, -176418897);
d = ff(d, a, b, c, x[i + 5], 12, 1200080426);
c = ff(c, d, a, b, x[i + 6], 17, -1473231341);
b = ff(b, c, d, a, x[i + 7], 22, -45705983);
a = ff(a, b, c, d, x[i + 8], 7, 1770035416);
d = ff(d, a, b, c, x[i + 9], 12, -1958414417);
c = ff(c, d, a, b, x[i + 10], 17, -42063);
b = ff(b, c, d, a, x[i + 11], 22, -1990404162);
a = ff(a, b, c, d, x[i + 12], 7, 1804603682);
d = ff(d, a, b, c, x[i + 13], 12, -40341101);
c = ff(c, d, a, b, x[i + 14], 17, -1502002290);
b = ff(b, c, d, a, x[i + 15], 22, 1236535329);
a = gg(a, b, c, d, x[i + 1], 5, -165796510);
d = gg(d, a, b, c, x[i + 6], 9, -1069501632);
c = gg(c, d, a, b, x[i + 11], 14, 643717713);
b = gg(b, c, d, a, x[i + 0], 20, -373897302);
a = gg(a, b, c, d, x[i + 5], 5, -701558691);
d = gg(d, a, b, c, x[i + 10], 9, 38016083);
c = gg(c, d, a, b, x[i + 15], 14, -660478335);
b = gg(b, c, d, a, x[i + 4], 20, -405537848);
a = gg(a, b, c, d, x[i + 9], 5, 568446438);
d = gg(d, a, b, c, x[i + 14], 9, -1019803690);
c = gg(c, d, a, b, x[i + 3], 14, -187363961);
b = gg(b, c, d, a, x[i + 8], 20, 1163531501);
a = gg(a, b, c, d, x[i + 13], 5, -1444681467);
d = gg(d, a, b, c, x[i + 2], 9, -51403784);
c = gg(c, d, a, b, x[i + 7], 14, 1735328473);
b = gg(b, c, d, a, x[i + 12], 20, -1926607734);
a = hh(a, b, c, d, x[i + 5], 4, -378558);
d = hh(d, a, b, c, x[i + 8], 11, -2022574463);
c = hh(c, d, a, b, x[i + 11], 16, 1839030562);
b = hh(b, c, d, a, x[i + 14], 23, -35309556);
a = hh(a, b, c, d, x[i + 1], 4, -1530992060);
d = hh(d, a, b, c, x[i + 4], 11, 1272893353);
c = hh(c, d, a, b, x[i + 7], 16, -155497632);
b = hh(b, c, d, a, x[i + 10], 23, -1094730640);
a = hh(a, b, c, d, x[i + 13], 4, 681279174);
d = hh(d, a, b, c, x[i + 0], 11, -358537222);
c = hh(c, d, a, b, x[i + 3], 16, -722521979);
b = hh(b, c, d, a, x[i + 6], 23, 76029189);
a = hh(a, b, c, d, x[i + 9], 4, -640364487);
d = hh(d, a, b, c, x[i + 12], 11, -421815835);
c = hh(c, d, a, b, x[i + 15], 16, 530742520);
b = hh(b, c, d, a, x[i + 2], 23, -995338651);
a = ii(a, b, c, d, x[i + 0], 6, -198630844);
d = ii(d, a, b, c, x[i + 7], 10, 1126891415);
c = ii(c, d, a, b, x[i + 14], 15, -1416354905);
b = ii(b, c, d, a, x[i + 5], 21, -57434055);
a = ii(a, b, c, d, x[i + 12], 6, 1700485571);
d = ii(d, a, b, c, x[i + 3], 10, -1894986606);
c = ii(c, d, a, b, x[i + 10], 15, -1051523);
b = ii(b, c, d, a, x[i + 1], 21, -2054922799);
a = ii(a, b, c, d, x[i + 8], 6, 1873313359);
d = ii(d, a, b, c, x[i + 15], 10, -30611744);
c = ii(c, d, a, b, x[i + 6], 15, -1560198380);
b = ii(b, c, d, a, x[i + 13], 21, 1309151649);
a = ii(a, b, c, d, x[i + 4], 6, -145523070);
d = ii(d, a, b, c, x[i + 11], 10, -1120210379);
c = ii(c, d, a, b, x[i + 2], 15, 718787259);
b = ii(b, c, d, a, x[i + 9], 21, -343485551);
a = add(a, olda);
b = add(b, oldb);
c = add(c, oldc);
d = add(d, oldd);
}
return rhex(a) + rhex(b) + rhex(c) + rhex(d);
}
function getMD5Value(data) {
var a = data;
var b = "\xa3\xac\xa1\xa3";
var c = "fdjf,jkgfkl";
var s = a + b + c;
return MD5(s);
}
var x64Add = function(m, n) {
m = [m[0] >>> 16, m[0] & 65535, m[1] >>> 16, m[1] & 65535];
n = [n[0] >>> 16, n[0] & 65535, n[1] >>> 16, n[1] & 65535];
var o = [0, 0, 0, 0];
o[3] += m[3] + n[3];
o[2] += o[3] >>> 16;
o[3] &= 65535;
o[2] += m[2] + n[2];
o[1] += o[2] >>> 16;
o[2] &= 65535;
o[1] += m[1] + n[1];
o[0] += o[1] >>> 16;
o[1] &= 65535;
o[0] += m[0] + n[0];
o[0] &= 65535;
return [(o[0] << 16) | o[1], (o[2] << 16) | o[3]]
};
var x64Multiply = function(m, n) {
m = [m[0] >>> 16, m[0] & 65535, m[1] >>> 16, m[1] & 65535];
n = [n[0] >>> 16, n[0] & 65535, n[1] >>> 16, n[1] & 65535];
var o = [0, 0, 0, 0];
o[3] += m[3] * n[3];
o[2] += o[3] >>> 16;
o[3] &= 65535;
o[2] += m[2] * n[3];
o[1] += o[2] >>> 16;
o[2] &= 65535;
o[2] += m[3] * n[2];
o[1] += o[2] >>> 16;
o[2] &= 65535;
o[1] += m[1] * n[3];
o[0] += o[1] >>> 16;
o[1] &= 65535;
o[1] += m[2] * n[2];
o[0] += o[1] >>> 16;
o[1] &= 65535;
o[1] += m[3] * n[1];
o[0] += o[1] >>> 16;
o[1] &= 65535;
o[0] += (m[0] * n[3]) + (m[1] * n[2]) + (m[2] * n[1]) + (m[3] * n[0]);
o[0] &= 65535;
return [(o[0] << 16) | o[1], (o[2] << 16) | o[3]]
};
var x64Rotl = function(m, n) {
n %= 64;
if (n === 32) {
return [m[1], m[0]]
} else {
if (n < 32) {
return [(m[0] << n) | (m[1] >>> (32 - n)), (m[1] << n) | (m[0] >>> (32 - n))]
} else {
n -= 32;
return [(m[1] << n) | (m[0] >>> (32 - n)), (m[0] << n) | (m[1] >>> (32 - n))]
}
}
};
var x64LeftShift = function(m, n) {
n %= 64;
if (n === 0) {
return m
} else {
if (n < 32) {
return [(m[0] << n) | (m[1] >>> (32 - n)), m[1] << n]
} else {
return [m[1] << (n - 32), 0]
}
}
};
var x64Xor = function(m, n) {
return [m[0] ^ n[0], m[1] ^ n[1]]
};
var x64Fmix = function(h) {
h = x64Xor(h, [0, h[0] >>> 1]);
h = x64Multiply(h, [4283543511, 3981806797]);
h = x64Xor(h, [0, h[0] >>> 1]);
h = x64Multiply(h, [3301882366, 444984403]);
h = x64Xor(h, [0, h[0] >>> 1]);
return h
};
var Fingerprint2_x64hash128 = function(key, seed) {
key = key || "";
seed = seed || 0;
var remainder = key.length % 16;
var bytes = key.length - remainder;
var h1 = [0, seed];
var h2 = [0, seed];
var k1 = [0, 0];
var k2 = [0, 0];
var c1 = [2277735313, 289559509];
var c2 = [1291169091, 658871167];
for (var i = 0; i < bytes; i = i + 16) {
k1 = [((key.charCodeAt(i + 4) & 255)) | ((key.charCodeAt(i + 5) & 255) << 8) | ((key.charCodeAt(i + 6) & 255) << 16) | ((key.charCodeAt(i + 7) & 255) << 24), ((key.charCodeAt(i) & 255)) | ((key.charCodeAt(i + 1) & 255) << 8) | ((key.charCodeAt(i + 2) & 255) << 16) | ((key.charCodeAt(i + 3) & 255) << 24)];
k2 = [((key.charCodeAt(i + 12) & 255)) | ((key.charCodeAt(i + 13) & 255) << 8) | ((key.charCodeAt(i + 14) & 255) << 16) | ((key.charCodeAt(i + 15) & 255) << 24), ((key.charCodeAt(i + 8) & 255)) | ((key.charCodeAt(i + 9) & 255) << 8) | ((key.charCodeAt(i + 10) & 255) << 16) | ((key.charCodeAt(i + 11) & 255) << 24)];
k1 = x64Multiply(k1, c1);
k1 = x64Rotl(k1, 31);
k1 = x64Multiply(k1, c2);
h1 = x64Xor(h1, k1);
h1 = x64Rotl(h1, 27);
h1 = x64Add(h1, h2);
h1 = x64Add(x64Multiply(h1, [0, 5]), [0, 1390208809]);
k2 = x64Multiply(k2, c2);
k2 = x64Rotl(k2, 33);
k2 = x64Multiply(k2, c1);
h2 = x64Xor(h2, k2);
h2 = x64Rotl(h2, 31);
h2 = x64Add(h2, h1);
h2 = x64Add(x64Multiply(h2, [0, 5]), [0, 944331445])
}
k1 = [0, 0];
k2 = [0, 0];
switch (remainder) {
case 15:
k2 = x64Xor(k2, x64LeftShift([0, key.charCodeAt(i + 14)], 48));
case 14:
k2 = x64Xor(k2, x64LeftShift([0, key.charCodeAt(i + 13)], 40));
case 13:
k2 = x64Xor(k2, x64LeftShift([0, key.charCodeAt(i + 12)], 32));
case 12:
k2 = x64Xor(k2, x64LeftShift([0, key.charCodeAt(i + 11)], 24));
case 11:
k2 = x64Xor(k2, x64LeftShift([0, key.charCodeAt(i + 10)], 16));
case 10:
k2 = x64Xor(k2, x64LeftShift([0, key.charCodeAt(i + 9)], 8));
case 9:
k2 = x64Xor(k2, [0, key.charCodeAt(i + 8)]);
k2 = x64Multiply(k2, c2);
k2 = x64Rotl(k2, 33);
k2 = x64Multiply(k2, c1);
h2 = x64Xor(h2, k2);
case 8:
k1 = x64Xor(k1, x64LeftShift([0, key.charCodeAt(i + 7)], 56));
case 7:
k1 = x64Xor(k1, x64LeftShift([0, key.charCodeAt(i + 6)], 48));
case 6:
k1 = x64Xor(k1, x64LeftShift([0, key.charCodeAt(i + 5)], 40));
case 5:
k1 = x64Xor(k1, x64LeftShift([0, key.charCodeAt(i + 4)], 32));
case 4:
k1 = x64Xor(k1, x64LeftShift([0, key.charCodeAt(i + 3)], 24));
case 3:
k1 = x64Xor(k1, x64LeftShift([0, key.charCodeAt(i + 2)], 16));
case 2:
k1 = x64Xor(k1, x64LeftShift([0, key.charCodeAt(i + 1)], 8));
case 1:
k1 = x64Xor(k1, [0, key.charCodeAt(i)]);
k1 = x64Multiply(k1, c1);
k1 = x64Rotl(k1, 31);
k1 = x64Multiply(k1, c2);
h1 = x64Xor(h1, k1)
}
h1 = x64Xor(h1, [0, key.length]);
h2 = x64Xor(h2, [0, key.length]);
h1 = x64Add(h1, h2);
h2 = x64Add(h2, h1);
h1 = x64Fmix(h1);
h2 = x64Fmix(h2);
h1 = x64Add(h1, h2);
h2 = x64Add(h2, h1);
return ("00000000" + (h1[0] >>> 0).toString(16)).slice(-8) + ("00000000" + (h1[1] >>> 0).toString(16)).slice(-8) + ("00000000" + (h2[0] >>> 0).toString(16)).slice(-8) + ("00000000" + (h2[1] >>> 0).toString(16)).slice(-8)
};
function printComponents(components) {
var values = components.map(function(component) {
return component.value
});
var hash = Fingerprint2_x64hash128(values.join(''), 31);
return hash
}
var components = [
{
"key": "userAgent",
"value": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36"
},
{
"key": "webdriver",
"value": false
},
{
"key": "language",
"value": "zh-CN"
},
{
"key": "colorDepth",
"value": 24
},
{
"key": "deviceMemory",
"value": 8
},
{
"key": "hardwareConcurrency",
"value": 12
},
{
"key": "screenResolution",
"value": [
1920,
1080
]
},
{
"key": "availableScreenResolution",
"value": [
1920,
1032
]
},
{
"key": "timezoneOffset",
"value": -480
},
{
"key": "timezone",
"value": "Asia/Shanghai"
},
{
"key": "sessionStorage",
"value": true
},
{
"key": "localStorage",
"value": true
},
{
"key": "indexedDb",
"value": true
},
{
"key": "addBehavior",
"value": false
},
{
"key": "openDatabase",
"value": true
},
{
"key": "cpuClass",
"value": "not available"
},
{
"key": "platform",
"value": "Win32"
},
{
"key": "plugins",
"value": [
[
"PDF Viewer",
"Portable Document Format",
[
[
"application/pdf",
"pdf"
],
[
"text/pdf",
"pdf"
]
]
],
[
"Chrome PDF Viewer",
"Portable Document Format",
[
[
"application/pdf",
"pdf"
],
[
"text/pdf",
"pdf"
]
]
],
[
"Chromium PDF Viewer",
"Portable Document Format",
[
[
"application/pdf",
"pdf"
],
[
"text/pdf",
"pdf"
]
]
],
[
"Microsoft Edge PDF Viewer",
"Portable Document Format",
[
[
"application/pdf",
"pdf"
],
[
"text/pdf",
"pdf"
]
]
],
[
"WebKit built-in PDF",
"Portable Document Format",
[
[
"application/pdf",
"pdf"
],
[
"text/pdf",
"pdf"
]
]
]
]
},
{
"key": "canvas",
"value": [
"canvas winding:yes",
"canvas fp:"
]
},
{
"key": "webgl",
"value": [
"",
"extensions:ANGLE_instanced_arrays;EXT_blend_minmax;EXT_color_buffer_half_float;EXT_disjoint_timer_query;EXT_float_blend;EXT_frag_depth;EXT_shader_texture_lod;EXT_texture_compression_bptc;EXT_texture_compression_rgtc;EXT_texture_filter_anisotropic;EXT_sRGB;KHR_parallel_shader_compile;OES_element_index_uint;OES_fbo_render_mipmap;OES_standard_derivatives;OES_texture_float;OES_texture_float_linear;OES_texture_half_float;OES_texture_half_float_linear;OES_vertex_array_object;WEBGL_color_buffer_float;WEBGL_compressed_texture_s3tc;WEBGL_compressed_texture_s3tc_srgb;WEBGL_debug_renderer_info;WEBGL_debug_shaders;WEBGL_depth_texture;WEBGL_draw_buffers;WEBGL_lose_context;WEBGL_multi_draw",
"webgl aliased line width range:[1, 1]",
"webgl aliased point size range:[1, 1024]",
"webgl alpha bits:8",
"webgl antialiasing:yes",
"webgl blue bits:8",
"webgl depth bits:24",
"webgl green bits:8",
"webgl max anisotropy:16",
"webgl max combined texture image units:32",
"webgl max cube map texture size:16384",
"webgl max fragment uniform vectors:1024",
"webgl max render buffer size:16384",
"webgl max texture image units:16",
"webgl max texture size:16384",
"webgl max varying vectors:30",
"webgl max vertex attribs:16",
"webgl max vertex texture image units:16",
"webgl max vertex uniform vectors:4095",
"webgl max viewport dims:[32767, 32767]",
"webgl red bits:8",
"webgl renderer:WebKit WebGL",
"webgl shading language version:WebGL GLSL ES 1.0 (OpenGL ES GLSL ES 1.0 Chromium)",
"webgl stencil bits:0",
"webgl vendor:WebKit",
"webgl version:WebGL 1.0 (OpenGL ES 2.0 Chromium)",
"webgl unmasked vendor:Google Inc. (NVIDIA)",
"webgl unmasked renderer:ANGLE (NVIDIA, NVIDIA GeForce GTX 1050 Ti Direct3D11 vs_5_0 ps_5_0, D3D11)",
"webgl vertex shader high float precision:23",
"webgl vertex shader high float precision rangeMin:127",
"webgl vertex shader high float precision rangeMax:127",
"webgl vertex shader medium float precision:23",
"webgl vertex shader medium float precision rangeMin:127",
"webgl vertex shader medium float precision rangeMax:127",
"webgl vertex shader low float precision:23",
"webgl vertex shader low float precision rangeMin:127",
"webgl vertex shader low float precision rangeMax:127",
"webgl fragment shader high float precision:23",
"webgl fragment shader high float precision rangeMin:127",
"webgl fragment shader high float precision rangeMax:127",
"webgl fragment shader medium float precision:23",
"webgl fragment shader medium float precision rangeMin:127",
"webgl fragment shader medium float precision rangeMax:127",
"webgl fragment shader low float precision:23",
"webgl fragment shader low float precision rangeMin:127",
"webgl fragment shader low float precision rangeMax:127",
"webgl vertex shader high int precision:0",
"webgl vertex shader high int precision rangeMin:31",
"webgl vertex shader high int precision rangeMax:30",
"webgl vertex shader medium int precision:0",
"webgl vertex shader medium int precision rangeMin:31",
"webgl vertex shader medium int precision rangeMax:30",
"webgl vertex shader low int precision:0",
"webgl vertex shader low int precision rangeMin:31",
"webgl vertex shader low int precision rangeMax:30",
"webgl fragment shader high int precision:0",
"webgl fragment shader high int precision rangeMin:31",
"webgl fragment shader high int precision rangeMax:30",
"webgl fragment shader medium int precision:0",
"webgl fragment shader medium int precision rangeMin:31",
"webgl fragment shader medium int precision rangeMax:30",
"webgl fragment shader low int precision:0",
"webgl fragment shader low int precision rangeMin:31",
"webgl fragment shader low int precision rangeMax:30"
]
},
{
"key": "webglVendorAndRenderer",
"value": "Google Inc. (NVIDIA)~ANGLE (NVIDIA, NVIDIA GeForce GTX 1050 Ti Direct3D11 vs_5_0 ps_5_0, D3D11)"
},
{
"key": "adBlock",
"value": false
},
{
"key": "hasLiedLanguages",
"value": false
},
{
"key": "hasLiedResolution",
"value": false
},
{
"key": "hasLiedOs",
"value": false
},
{
"key": "hasLiedBrowser",
"value": false
},
{
"key": "touchSupport",
"value": [
0,
false,
false
]
},
{
"key": "fonts",
"value": [
"Arial",
"Arial Black",
"Arial Narrow",
"Book Antiqua",
"Bookman Old Style",
"Calibri",
"Cambria",
"Cambria Math",
"Century",
"Century Gothic",
"Comic Sans MS",
"Consolas",
"Courier",
"Courier New",
"Georgia",
"Helvetica",
"Impact",
"Lucida Console",
"Lucida Handwriting",
"Lucida Sans Unicode",
"Microsoft Sans Serif",
"Monotype Corsiva",
"MS Gothic",
"MS PGothic",
"MS Reference Sans Serif",
"MS Sans Serif",
"MS Serif",
"Palatino Linotype",
"Segoe Print",
"Segoe Script",
"Segoe UI",
"Segoe UI Light",
"Segoe UI Semibold",
"Segoe UI Symbol",
"Tahoma",
"Times",
"Times New Roman",
"Trebuchet MS",
"Verdana",
"Wingdings",
"Wingdings 2",
"Wingdings 3"
]
},
{
"key": "audio",
"value": "124.04347527516074"
}
]
function get_login_url(CallBack, userName, checkCode, password) {
password = getMD5Value(password)
aws = printComponents(components)
var url = 'https://aq.99.com/AjaxAction/AC_userlogin.ashx'
return url + "?CallBack=" + CallBack + "&siteflag=995&nduseraction=login&txtUserName=" + userName + "&txtPassword=" + password + "&checkcode=" + checkCode + "&Rnd=" + Math.random() + "&aws=" + aws;
}
Python源码:
"""
Email:[email protected]
Date: 2023/8/24 10:18
"""
import re
import time
import execjs
import requests
from utils.chaojiying import ChaojiyingClient
class Spider:
def __init__(self, username, password):
self.session = requests.session()
self.session.headers = {
"authority": "checkcode.99.com",
"referer": "https://aq.99.com/",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36"
}
self.callback = 'jQuery112401962284678331523_1692843120473'
self.ticket = ''
self.img_url = ''
self.pic_str = ''
self.username = username
self.password = password
def get_ticket(self):
url = "https://checkcode.99.com/token"
params = {
"action": "getticket",
"bussiness": "aq_login",
"callback": self.callback,
"_": str(int(time.time() * 1000))
}
response = self.session.get(url, params=params)
pattern = r'"ticket":"(.*?)"'
self.ticket = re.findall(pattern, response.text)[0]
print('ticket:', self.ticket)
def get_img_url(self):
url = "https://aq.99.com/AjaxAction/AC_verifycode.ashx"
params = {
"CallBack": self.callback,
"nduseraction": "getverifycodestate",
"verifycodetype": "UserLogin",
"bussiness": "aq_login",
"ticket": self.ticket,
"SiteFlag": "995",
"RND": "0.7099289496089389",
"_": str(int(time.time() * 1000))
}
response = self.session.get(url, params=params)
pattern = r'"VerifyCodeUrl":"(.*?)"'
self.img_url = re.findall(pattern, response.text)[0]
print('img_url:', self.img_url)
def get_img_code(self):
response = self.session.get(self.img_url)
with open('img.png', 'wb') as f:
f.write(response.content)
cjy = ChaojiyingClient('打码平台账号', '打码平台密码', '946014')
im = open('img.png', 'rb').read()
pic_data = cjy.post_pic(im, 1902)
self.pic_str = pic_data['pic_str']
print('pic_str:', self.pic_str)
def login(self):
with open('get_params.js', 'r', encoding='utf-8') as f:
js_obj = execjs.compile(f.read())
url = js_obj.call('get_login_url', self.callback, self.username, self.pic_str, self.password)
response = self.session.get(url)
print(response.text)
print(response)
if __name__ == '__main__':
s = Spider('账号', '密码')
s.get_ticket()
s.get_img_url()
s.get_img_code()
s.login()