【从零学习python 】80.线程访问全局变量与线程安全问题

文章目录

    • 线程访问全局变量与线程安全问题
      • 摘要
      • 技术标签
      • 同步
      • 互斥锁
      • 使用互斥锁解决卖票问题
    • 上锁过程
      • 总结
    • 进阶案例

线程访问全局变量与线程安全问题

摘要

本篇文章探讨了线程访问全局变量及其可能引发的安全问题。在多线程编程中,全局变量可以方便地在不同线程之间共享数据,但同时也带来了线程非安全的风险。通过示例代码演示了全局变量的访问和修改,并说明了线程非安全可能导致的数据混乱情况。此外,还介绍了线程安全问题,以一个卖票的场景为例,展示了多个线程对共享资源进行操作时可能出现的问题。

技术标签

  1. 多线程编程
  2. 全局变量访问
  3. 线程非安全
  4. 线程同步
  5. 共享资源管理

同步

当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制。同步就是协同步调,按预定的先后次序进行运行。线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。

互斥锁

互斥锁为资源引入一个状态:锁定/非锁定。

某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便地处理锁定:

# 创建锁
mutex = threading.Lock()
# 锁定
mutex.acquire()
# 释放
mutex.release()

注意:

  • 如果这个锁之前是没有上锁的,那么acquire不会堵塞。
  • 如果在调用acquire对这个锁上锁之前,它已经被其他线程上了锁,那么此时acquire会堵塞,直到这个锁被解锁为止。

和文件操作一样,Lock也可以使用with语句快速地实现打开和关闭操作。

使用互斥锁解决卖票问题

import threading
import time

ticket = 20
lock = threading.Lock()

def sell_ticket():
    global ticket
    while True:
        lock.acquire()
        if ticket > 0:
            time.sleep(0.5)
            ticket -= 1
            lock.release()
            print('{}卖了一张票,还剩{}'.format(threading.current_thread().name, ticket))
        else:
            print('{}票卖完了'.format(threading.current_thread().name))
            lock.release()
            break

for i in range(5):
    t = threading.Thread(target=sell_ticket, name='thread-{}'.format(i + 1))
    t.start()

上锁过程

当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。

每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。

线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。

总结

锁的好处:

  • 确保了某段关键代码只能由一个线程从头到尾完整地执行。
    锁的坏处:
  • 阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了。
  • 由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁。

进阶案例

【Python】Python 实现猜单词游戏——挑战你的智力和运气!

【python】Python tkinter库实现重量单位转换器的GUI程序

【python】使用Selenium获取(2023博客之星)的参赛文章

【python】使用Selenium和Chrome WebDriver来获取 【腾讯云 Cloud Studio 实战训练营】中的文章信息

使用腾讯云 Cloud studio 实现调度百度AI实现文字识别

【玩转Python系列【小白必看】Python多线程爬虫:下载表情包网站的图片

【玩转Python系列】【小白必看】使用Python爬取双色球历史数据并可视化分析

【玩转python系列】【小白必看】使用Python爬虫技术获取代理IP并保存到文件中

【小白必看】Python图片合成示例之使用PIL库实现多张图片按行列合成

【小白必看】Python爬虫实战之批量下载女神图片并保存到本地

【小白必看】Python词云生成器详细解析及代码实现

【小白必看】Python爬取NBA球员数据示例

【小白必看】使用Python爬取喜马拉雅音频并保存的示例代码

【小白必看】使用Python批量下载英雄联盟皮肤图片的技术实现

【小白必看】Python爬虫数据处理与可视化

【小白必看】轻松获取王者荣耀英雄皮肤图片的Python爬虫程序

【小白必看】利用Python生成个性化名单Word文档

【小白必看】Python爬虫实战:获取阴阳师网站图片并自动保存

小白必看系列之图书管理系统-登录和注册功能示例代码

小白实战100案例: 完整简单的双色球彩票中奖判断程序,适合小白入门

使用 geopandas 和 shapely(.shp) 进行地理空间数据处理和可视化

使用selenium爬取猫眼电影榜单数据

图像增强算法Retinex原理与实现详解

爬虫入门指南(8): 编写天气数据爬虫程序,实现可视化分析

爬虫入门指南(7):使用Selenium和BeautifulSoup爬取豆瓣电影Top250实例讲解【爬虫小白必看】

爬虫入门指南(6):反爬虫与高级技巧:IP代理、User-Agent伪装、Cookie绕过登录验证及验证码识别工具

爬虫入门指南(5): 分布式爬虫与并发控制 【提高爬取效率与请求合理性控制的实现方法】

爬虫入门指南(4): 使用Selenium和API爬取动态网页的最佳方法

爬虫入门指南(3):Python网络请求及常见反爬虫策略应对方法

爬虫入门指南(2):如何使用正则表达式进行数据提取和处理

爬虫入门指南(1):学习爬虫的基础知识和技巧

深度学习模型在图像识别中的应用:CIFAR-10数据集实践与准确率分析

Python面向对象编程基础知识和示例代码

MySQL 数据库操作指南:学习如何使用 Python 进行增删改查操作

Python文件操作指南:编码、读取、写入和异常处理

使用Python和Selenium自动化爬取 #【端午特别征文】 探索技术极致,未来因你出“粽” # 的投稿文章

Python多线程与多进程教程:全面解析、代码案例与优化技巧

Selenium自动化工具集 - 完整指南和使用教程

Python网络爬虫基础进阶到实战教程

Python入门教程:掌握for循环、while循环、字符串操作、文件读写与异常处理等基础知识

Pandas数据处理与分析教程:从基础到实战

Python 中常用的数据类型及相关操作详解

【2023年最新】提高分类模型指标的六大方案详解

Python编程入门基础及高级技能、Web开发、数据分析和机器学习与人工智能

用4种回归方法绘制预测结果图表:向量回归、随机森林回归、线性回归、K-最近邻回归

你可能感兴趣的:(python从零出发,学习,python,多线程编程,全局变量访问,线程非安全,线程同步,互斥锁)