目录
引言:
一、Kubernetes概述
二、Kubernetes部署方式的演变
三、为什么要使用kubernetes
3.1 Kubernetes 特点
3.2 kubernetes特性
3.2.1轻量级
3.2.2开源
3.2.3自我修复
3.2.4弹性伸缩
3.2.5服务发现和负载均衡
3.2.6版本回退
3.2.7存储编排
3.2.8批处理
3.2.9自动部署和回滚
3.2.10机密和配置管理 (secret——》安全/认证加密性的数据)
四、kubernetes集群架构与组件
4.1kubernetes 组件
4.1.1master组件
4.1.2node组件
4.1.3整体流程
4.2 k8s工作流程
五、Kubernetes核心概念
5.1 Pod
5.2 Label
5.3 Service
5.4 Ingress
5.5 Name
5.6 Namespace
六:总结
Kubernetes 是一个可移植、可扩展的开源平台,用于管理容器化工作负载和服务,有助于声明式配置和自动化。它拥有庞大且快速发展的生态系统。
Kubernetes(通常称为K8s,K8s是将8个字母“ubernete”替换为“8”的缩写)是一个以容器为中心的基础架构,可以实现在物理集群或虚拟机集群上调度和运行容器,提供容器自动部署、扩展和管理的开源平台。满足了应用程序在生产环境中的一些通用需求:应用实例副本、水平自动扩展、命名与发现、负载均衡、滚动升级、资源监控等。
Kubernetes 是一个可移植、可扩展的开源平台,用于管理容器化工作负载和服务,有助于声明式配置和自动化。它拥有庞大且快速发展的生态系统。
作用:
在部署应用程序的方式上,主要经历了三个时代:
传统部署:互联网早期,会直接将应用程序部署在物理机上
优点:简单,不需要其它技术的参与
缺点:不能为应用程序定义资源使用边界,很难合理地分配计算资源,而且程序之间容易产生影响
虚拟化部署:可以在一台物理机上运行多个虚拟机,每个虚拟机都是独立的一个环境
优点:程序环境不会相互产生影响,提供了一定程度的安全性
缺点:增加了操作系统,浪费了部分资源
容器化部署:与虚拟化类似,但是共享了操作系统
优点:
容器化部署方式给带来很多的便利,但是也会出现一些问题,比如说:
一个容器故障停机了,怎么样让另外一个容器立刻启动去替补停机的容器
当并发访问量变大的时候,怎么样做到横向扩展容器数量
这些容器管理的问题统称为容器编排问题,为了解决这些容器编排问题,就产生了一些容器编排的软件:
众所周知kubernetes是一个容器编排工具,可以高效、批量的去管理容器;那么有人就要问了,docker有自带的docker-compose(单机编排)和docker-Swarm(多机编排),为什么还要用k8s,Docker-Compose的运用可以充分地把单物理服务器的性能充分利用起来,并且可以快速地进行持续交付,那如何高效地进行监控各个容器的健康运行情况以及崩溃后如何迁移服务呢?也就是常见的集群管理问题,此时的docker Swarm技术解决了这个问题,但是如何更加高效、智能的管理容器集群呢?这时谷歌公司内部使用很久k8s横空出世,抢占了近80%的市场份额,成为行业领头羊,为什么k8s能击败docker Swarm呢?那是因为kubernetes的这些优点:
技术 | 应用场景 | 资源占用比 |
docker | 单机部署简单应用 | 低 |
Docker-Compose | 单机/少数机器部署应用 | 低 |
kubernetes | 集群部署高可用应用 | 低 |
使用go语言;一种编译型语言,语言级别支持进程管理,不需要人为控制,所以以go开发的资源消耗占用资源小。
一些解释性语言:例如Python/Javascript / Perl /Shell,效率较低,占用内存资源较多
在节点故障时重新启动失败的容器,替换和重新部署,保证预期的副本数量;杀死健康检查失败的容器,并且在未准备好之前不会处理客户端请求,确保线上服务不中断。
即对异常状态的容器进行重启或重建(先删除、再创建),目的是保证业务线不中断。
使用命令 UI 或者基于CPU使用情况自动快速扩容和缩容应用程序实例,保证应用业务高峰并发时的高可用性;业务低峰时回收资源,以最小成本运行服务。
伸缩:扩容和缩容
弹性:人为只要指定规则,满足条件时,就会自动触发扩容或缩容的操作
K8S为多个pod提供一个统一访问入口(内部IP地址和一个DNS名称),并且负载均衡关联的所有容器,使得用户无需考虑容器IP问题。
服务发现:服务可以通过自动发现的形式找到它所依赖的服务
负载均衡:如果一个服务起动了多个容器,能够自动实现请求的负载均衡
如果发现新发布的程序版本有问题,可以立即回退到原来的版本
挂载外部存储系统,无论是来自本地存储,公有云(如AWS),还是网络存储〈如NES、GlusterFS、Ceph)都作为集群资源的一部分使用,极大提高存储使用灵活性。
支持外挂存储并对外挂存储资源进行编排
提供一次性任务(job),定时任务(cronjob);满足批量数据处理和分析的场景
KBS采用滚动更新策略更新应用,一次更新一个Pod,而不是同时删除所有Pod,如果更新过程中出现问题,将回滚更改,确保升级不受影响业务。
管理机密数据和应用程序配置,而不需要把敏感数据暴露在镜像里,提高敏感数据安全性。并可以将一些常用的配置存储在K8S中,方便应用程序使用。
K8S是属于主从设备模型(Master-slave 架构),即有Master 节点负责集群的调度、管理和运维,Slave 节点是集群中的运算工作负载节点。
在K8S中,主节点一般被称为Master 节点,而从节点则被称为Worker Node节点,每个Node都会被Master分配一些工作负载。
Master组件可以在群集中的任何计算机上运行,但建议Master节点占据一个独立的服务器。因为Master是整个集群的大脑,如果Master所在节点宕机或不可用,那么所有的控制命令都将失效。除了Master, 在K8S集群中的其他机器被称为Worker Node节点,当某个Node宕机时,其上的工作负载会被Master自动转移到其他节点上去。
master:集群的控制平面,负责集群的决策 ( 管理 )
①kube-apiserver
Kubernetes API,集群的统一入口,各组件协调者,以Restful API提供接口服务,所有对象资源的增删改查和监听操作都交给APIServer处理后再提交给Etcd存储
②kube-controller-manager (控制器管理中心-定义资源类型)
控制器 | 功能 |
NodeContrpller(节点控制器) | 负责在节点出现故障时发现和响应 |
Replication Controller ( 副本控制器) | 负责保证集群中一个RC (资源对象ReplicationController) 所关联的Pod副本数始终保持预设值。可以理解成确保集群中有且仅有N个Pod实例,N是RC中定义的Pod副本数量 |
Endpoints Controller (端点控制器) | 填充端点对象(即连接Services 和Pods) ,负责监听Service 和对应的Pod 副本的变化。可以理解端点是一个服务暴露出来的访问点, 如果需要访问一个服务,则必须知道它的 endpoint |
Service Account & Token Controllers (服务帐户和令牌控制器) | 为新的命名空间创建默认帐户和API访问令牌 |
ResourceQuotaController(资源配额控制器) | 确保指定的资源对象在任何时候都不会超量占用系统物理资源 |
Namespace Controller (命名空间控制器) | 管理namespace的生命周期 |
Service Controller (服务控制器) | 属于K8S集群与外部的云平台之间的一个接口控制器 |
③kube-scheduler
④etcd(存储中心)
PS:etcd V2版本:数据保存在内存中
v3版本:引入本地volume卷的持久化(可根据磁盘进行恢复),服务发现,分布式(方便扩容,缩容)
etcd是一种定时全量备份+持续增量备份的持久化方式,最后存储在磁盘中
但kubernetes 1.11版本前不支持v3,我用的事K8S 1.15
ETCD一般会做为3副本机制(奇数方式),分布在三台master上(也有的公司单独用服务器部署ETCD )
master:奇数的方式部署(多节点的时候)
⑤AUTH :认证模块
K8S 内部支持使用RBAC认证的方式进行认证
⑥cloud-controller-manager
云控制器管理器是指嵌入特定云的控制逻辑的 控制平面组件。 云控制器管理器允许您链接集群到云提供商的应用编程接口中, 并把和该云平台交互的组件与只和您的集群交互的组件分离开。
cloud-controller-manager 仅运行特定于云平台的控制回路。 如果你在自己的环境中运行 Kubernetes,或者在本地计算机中运行学习环境, 所部署的环境中不需要云控制器管理器。
与 kube-controller-manager 类似,cloud-controller-manager 将若干逻辑上独立的 控制回路组合到同一个可执行文件中,供你以同一进程的方式运行。 你可以对其执行水平扩容(运行不止一个副本)以提升性能或者增强容错能力
下面的控制器都包含对云平台驱动的依赖:
①kubelet
kubelet是Master在Node节点上的Agent,管理本机运行容器的生命周期,比如创建容器、Pod挂载数据卷、下载secret、获取容器和节点状态等工作。kubelet将每个Pod转换成一组容器
kubelet —》先和docker引擎进行交互—》docker容器(一组容器跑在Pod中)
②kube-proxy(四层)
在Node节点上实现Pod网络代理,维护网络规则、pod之间通信和四层负载均衡工作。默认会写入规则至iptables ,目前支持IPVS、同时还支持namespaces
对于七层的负载,k8s官方提供了一种解决方案;ingress-nginx
③docker或rocket
容器引擎,运行容器
①使用kubectl命令的时候会先进行验证权限(AUTH)
②通过API-server 对容器云的资源进行操作
K8S 创建Pod 流程:
kubectl 创建一个Pod(在提交时,转化为json格式)
下面,以部署一个nginx服务来说明kubernetes系统各个组件调用关系:
这样,外界用户就可以访问集群中的nginx服务了
Kubernetes包含多种类型的资源对象: Pod、 Label、 Service、 Replication Controller 等。
所有的资源对象都可以通过Kubernetes 提供的kubectl 工具进行增、删、改、查等操作,并将其保存在etcd 中持久化存储。
Kubernets其实是一个高度自动化的资源控制系统,通过跟踪对比etcd存储里保存的资源期望状态与当前环境中的实际资源状态的差异,来实现自动控制和自动纠错等高级功能。
Pod是Kubernetes 创建或部署的最小/最简单的基本单位,一个Pod代表集群上正在运行的一个进程。
Pod控制器
Pod控制器是Pod启动的一种模版,用来保证在K8S里启动的Pod应始终按照用户的预期运行(副本数、生命周期、健康状态检查等)
K8s内提供了众多的Pod控制器,常用的有以下几种:
可以理解成Deployment 就是总包工头,主要负责监督底下的工人Pod 干活,
确保每时每刻有用户要求数量的Pod在工作。如果一旦发现某个工人Pod 不行了,
就赶紧新拉一个Pod 过来替换它。而ReplicaSet 就是总包工头手下的小包工头。
从K8S使用者角度来看,用户会直接操作Deployment 部署服务,
而当Deployment 被部署的时候,K8S 会自动生成要求的ReplicaSet和Pod。
用户只需要关心Deployment 而不操心ReplicaSet。
资源对象Replication Controller 是ReplicaSet 的前身,
官方推荐用Deployment 取代Replication Controller 来部署服务。
Label选择器(Label selector )
给某个资源对象定义一个Label,就相当于给它打了一个标签;随后可以通过标签选择器( Label selector) 查询和筛选拥有某些Label的资源对象。
标签选择器目前有两种:基于等值关系(等于、不等于)和基于集合关系(属于、不属于、存在)。
在K8s的集群里,虽然每个Pod会被分配一个单独的IP地址,但由于Pod是有生命周期的(它们可以被创建,而且销毁之后不会再启动),随时可能会因为业务的变更,导致这个IP地址也会随着Pod 的销毁而消失。
Service就是用来解决这个问题的核心概念。
K8S中的Service并不是我们常说的“服务"的含义,而更像是网关层,可以看作一组提供相同服务的Pod的对外访问接口、流量均衡器。
Service作用于哪些Pod是通过标签选择器来定义的。
在K8S集群中,service 可以看作一组提供相同服务的Pod的对外访问接口。客户端需要访问的服务就是service对象。每个service都有一个固定的虛拟ip (这个ip也被称为Cluster IP) ,自动并且动态地绑定后端的Pod, 所有的网络请求直接访问Service 的虚拟ip,service会自动向后端做转发。
Service除了提供稳定的对外访问方式之外,还能起到负载均衡(Load Balance)的功能,自动把请求流量分布到后端所有的服务.上,Service可以做到对客户透明地进行水平扩展(scale)。
而实现service 这一功能的关键, 就是kube-proxy。 kube-proxy 运行在每个节点上,监听API Server 中服务对象的变化,可通过以下三种流量调度模式:
userspace (废弃)、iptables ( 濒临废弃)、ipvs (推荐,性能最好)来实现网络的转发。
Service 是K8S服务的核心,屏蔽了服务细节,统一对外暴露服务接口,真正做到了“微服务”。比如我们的一个服务A,部署了3个副本,也就是3个Pod;
对于用户来说,只需要关注一个Service 的入口就可以,而不需要操心究竞应该请求哪一个Pod。
优势非常明显:一方面外部用户不需要感知因为Pod. 上服务的意外崩溃、K8S重新拉起Pod 而造成的IP变更,外部用户也不需要感知因升级、变更服务带来的Pod替换而造成的IP变化。
Service主要负责K8S集群内部的网络拓扑,那么集群外部怎么访问集群内部呢?这个时候就需要Ingress 了。Ingress 是整个K8S集群的接入层,负责集群内外通讯。
Ingress是K8S 集群里工作在oSI网络参考模型下,第7层的应用,对外暴露的接口,典型的访问方式是http/https.
Service只能进行第四层的流量调度,表现形式是iptport。 Ingress 则可以调度不同业务域、不同URL访问路径的业务流量。
比如:客户端请求http://www. kgc。com:port ---> Ingress ---> Service ---> Pod
由于K8S内部,使用“资源”来定义每一种逻辑概念(功能),所以每种“资源”,都应该有自己的“名称”。
“资源”有api 版本(apiversion) 、类别(kind) 、元数据(metadata) 、定义清单(spec) 、状态(status) 等配置信息。
“名称”通常定义在“资源”的“元数据”信息里。在同一个namespace 空间中必须是唯一的。
随着项目增多、人员增加、集群规模的扩大,需要一.种能够逻辑.上隔离K8S内各种“资源”的方法,这就是Namespace 。
Namespace是为了把一个K8S集群划分为若干个资源不可共享的虚拟集群组而诞生的。
不同Namespace 内的“资源”名称可以相同,相同Namespace 内的同种“资源”,“名称”不能相同。
合理的使用K8S的Namespace,可以使得集群管理员能够更好的对交付到K8S里的服务进行分类管理和浏览。
K8S里默认存在的Namespace 有: default、kube-system、kube-public等。
查询K8S里特定“资源”要带上相应的Namespace
kubernetes的本质是一组服务器集群,它可以在集群的每个节点上运行特定的程序,来对节点中的容器进行管理。目的是实现资源管理的自动化,主要提供了如下的主要功能:
Kubernetes核心组件
Kubernetes Master是集群的主要控制单元,用于管理其工作负载并指导整个系统的通信。Kubernetes控制平面由各自的进程组成,每个组件都可以在单个主节点上运行,也可以在支持high-availability clusters的多个主节点上运行。
组件名称 | 作用 |
etcd | 保存整个集群的状态 |
apiserver | 提供了资源操作的唯一入口,并提供认证、授权、访问控制、API注册和发现等机制 |
controller manager | 负责维护集群的状态,比如故障检测、自动扩展、滚动更新等 |
scheduler | 负责资源的调度,按照预定的调度策略将Pod调度到相应的机器上 |
kubelet | 负责维护容器的生命周期,同时也负责Volume(CVI)和网络(CNI)的管理 |
Container runtime | 负责镜像管理以及Pod和容器的真正运行(CRI) |
kube-proxy | 负责为Service提供cluster内部的服务发现和负载均衡 |
其他组件:
组件名称 | 作用 |
kube-dns | 负责为整个集群提供DNS服务 |
Ingress Controller | 为服务提供外网入口 |
Heapster | 提供资源监控 |
Dashboard | 提供GUI |
Federation | 提供跨可用区的集群 |
Fluentd-elasticsearch | 提供集群日志采集、存储与查 |