1.数据探索和理解:数据可视化可以帮助我们更好地理解数据集的特征、分布和关系。通过可视化数据,我们可以发现数据中的模式、异常值、缺失值等信息,从而更好地了解数据的特点和结构。
2.特征工程:数据可视化可以帮助我们选择和创建合适的特征。通过可视化特征与目标变量之间的关系,我们可以发现特征与目标之间的相关性、线性/非线性关系、重要性等信息,从而指导特征选择、变换和创建。
3.模型评估和调优:数据可视化可以帮助我们评估和比较不同模型的性能。通过可视化模型的预测结果、误差分布、学习曲线等信息,我们可以了解模型的准确性、稳定性、过拟合/欠拟合等情况,并根据可视化结果进行模型调优和改进。
4.结果解释和沟通:数据可视化可以帮助我们解释和传达机器学习模型的结果。通过可视化模型的预测、特征重要性、决策边界等信息,我们可以更直观地解释模型的工作原理和结果,使非技术人员也能理解和接受模型的输出。
5.发现洞察和故事讲述:数据可视化可以帮助我们发现数据中的洞察和故事,并将其传达给观众。通过可视化数据的趋势、关联、分布等信息,我们可以发现数据中的有趣模式、趋势和关系,并通过可视化故事的方式将这些发现传达给观众。
# 导入库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 读取训练集和测试集文件
train_data = pd.read_csv('D:/D/Download/360安全浏览器下载/用户新增预测挑战赛公开数据/train.csv')
test_data = pd.read_csv('D:/D/Download/360安全浏览器下载/用户新增预测挑战赛公开数据/test.csv')
print(train_data.info())
通过pd库的df.info()方法查看数据框属性,发现只有udmap字段为类别类型,其余皆为数值类型。
# x7分组下标签均值
sns.barplot(x='x7', y='target', data=train_data)
# 相关性热力图
sns.heatmap(train_data.corr().abs(), cmap='YlOrRd')
相关性热力图颜色越深代表相关性越强,所以x7和x8变量之间的关系更加密切,还有common_ts与x6也是。即存在很强的多重共线性,进行特征工程时可以考虑剔除二者中的一个变量,以免导致因多重共线性造成的过拟合。
接下来对于每一个字段,绘制直方图和箱线图
# 列表,包含要分析的列名
cols = ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8']
# 对于每一个字段,绘制直方图
plt.figure(figsize=(15, 10))
for i, col in enumerate(cols):
plt.subplot(2, 4, i+1)
sns.histplot(train_data[col], bins=30, kde=True)
plt.title(f'Histogram of {col}')
plt.xlabel(col)
plt.ylabel('Frequency')
plt.tight_layout()
plt.show()
# 对于每一个字段,绘制箱线图
plt.figure(figsize=(15, 10))
for i, col in enumerate(cols):
plt.subplot(2, 4, i+1)
sns.boxplot(train_data[col])
plt.title(f'Boxplot of {col}')
plt.xlabel(col)
plt.tight_layout()
plt.show()
# 获取指定时间和日期
train_data['common_ts'] = pd.to_datetime(train_data['common_ts'], unit='ms')
# 从common_ts中提取小时
train_data['common_ts_hour'] = train_data['common_ts'].dt.hour
# 绘制每小时下标签分布变化
sns.barplot(x='common_ts_hour', y='target', data=train_data)
plt.show()
可以发现在1-15小时之间新增用户的概率相对较大,尤其在8-15小时之间。后续可以针对这部分进行特征提取尝试。
# 定义函数,统计每个key对应的标签均值,绘制直方图。
def plot_keytarget_mean(df):
target_mean = np.zeros(9)
for i in range(1, 10):
df_temp = df.copy()
number = 'key' + str(i)
if number in df_temp.columns:
data = {
f"{number}": df_temp[number],
'target': df_temp['target']
}
df1 = pd.DataFrame(data)
# 过滤出 "key" 列中非零值对应的行
df_nonzero_key = df1[df1[number] != 0]
# 计算非零值 "key" 对应的 "target" 均值
mean_target_nonzero_key = df_nonzero_key['target'].mean()
target_mean[i - 1] = mean_target_nonzero_key # 索引从 0 开始
return target_mean
target_mean = plot_keytarget_mean(train_data)
print(target_mean)
keys = ['key1', 'key2', 'key3', 'key4', 'key5', 'key6', 'key7', 'key8', 'key9']
plt.bar(keys, target_mean)
plt.ylabel('Mean Target Value')
从上图看,特征key7,key8,key9对应的新增用户概率较大,后续可以做些相关的特征组合,尝试是否能够提高模型预测准确度。
通过数据可视化,我们可以更详细地观察不同特征与目标之间的关系,从而帮助我们筛选出有用的特征,并进行特征组合,以进一步提高模型的预测准确性。并且可以更好地理解数据,发现数据中的模式和趋势,并根据这些发现来优化我们的建模过程。
特征工程指的是把原始数据转变为模型训练数据的过程,目的是获取更好的训练数据特征。特征工程能使得模型的性能得到提升,有时甚至在简单的模型上也能取得不错的效果。
由数据可视化以及观察数据可知,时间是一个比较重要的特征。
因此添加分钟,星期,年等时间特征
train_data['common_ts_hour'] = train_data['common_ts'].dt.hour
test_data['common_ts_hour'] = test_data['common_ts'].dt.hour
train_data['common_ts_minute'] = train_data['common_ts'].dt.minute + train_data['common_ts_hour'] * 60
test_data['common_ts_minute'] = test_data['common_ts'].dt.minute + test_data['common_ts_hour'] * 60
train_data['dayofweek'] = train_data['common_ts'].dt.dayofweek
test_data['dayofweek'] = test_data['common_ts'].dt.dayofweek
train_data["weekofyear"] = train_data["common_ts"].dt.isocalendar().week.astype(int)
test_data["weekofyear"] = test_data["common_ts"].dt.isocalendar().week.astype(int)
train_data["dayofyear"] = train_data["common_ts"].dt.dayofyear
test_data["dayofyear"] = test_data["common_ts"].dt.dayofyear
train_data["day"] = train_data["common_ts"].dt.day
test_data["day"] = test_data["common_ts"].dt.day
train_data['is_weekend'] = train_data['dayofweek'] // 6
test_data['is_weekend'] = test_data['dayofweek'] // 6
发现week的值和用户增长有很大的关系,提交后发现分数提升至0.73+
然后继续添加学习文档中所给特征。发现存在缺失值需要填充,通过fillna用0填充缺失值。
# 提取x1~x8的频次特征和标签特征
for i in range(1, 9):
train_data['x' + str(i) + '_freq'] = train_data['x' + str(i)].map(train_data['x' + str(i)].value_counts())
test_data['x' + str(i) + '_freq'] = test_data['x' + str(i)].map(train_data['x' + str(i)].value_counts())
test_data['x' + str(i) + '_freq'].fillna(test_data['x' + str(i) + '_freq'].mode()[0], inplace=True)
train_data['x' + str(i) + '_mean'] = train_data['x' + str(i)].map(train_data.groupby('x' + str(i))['target'].mean())
test_data['x' + str(i) + '_mean'] = test_data['x' + str(i)].map(train_data.groupby('x' + str(i))['target'].mean())
test_data['x' + str(i) + '_mean'].fillna(test_data['x' + str(i) + '_mean'].mode()[0], inplace=True)
# 提取key1~key9的频次特征和标签特征
for i in range(1, 10):
train_data['key'+str(i)+'_freq'] = train_data['key'+str(i)].map(train_data['key'+str(i)].value_counts())
test_data['key'+str(i)+'_freq'] = test_data['key'+str(i)].map(train_data['key'+str(i)].value_counts())
train_data['key'+str(i)+'_mean'] = train_data['key'+str(i)].map(train_data.groupby('key'+str(i))['target'].mean())
test_data['key'+str(i)+'_mean'] = test_data['key'+str(i)].map(train_data.groupby('key'+str(i))['target'].mean())
train_data = train_data.fillna(0)
test_data = test_data.fillna(0)
然后通过其他助教的优秀笔记中说众数比0填充效果好尝试了一下他的特征,果然效果很好增加到0.75+。
具体代码如下:
train_data['x1_freq'] = train_data['x1'].map(train_data['x1'].value_counts())
test_data['x1_freq'] = test_data['x1'].map(train_data['x1'].value_counts())
test_data['x1_freq'].fillna(test_data['x1_freq'].mode()[0], inplace=True)
train_data['x1_mean'] = train_data['x1'].map(train_data.groupby('x1')['target'].mean())
test_data['x1_mean'] = test_data['x1'].map(train_data.groupby('x1')['target'].mean())
test_data['x1_mean'].fillna(test_data['x1_mean'].mode()[0], inplace=True)
train_data['x2_freq'] = train_data['x2'].map(train_data['x2'].value_counts())
test_data['x2_freq'] = test_data['x2'].map(train_data['x2'].value_counts())
test_data['x2_freq'].fillna(test_data['x2_freq'].mode()[0], inplace=True)
train_data['x2_mean'] = train_data['x2'].map(train_data.groupby('x2')['target'].mean())
test_data['x2_mean'] = test_data['x2'].map(train_data.groupby('x2')['target'].mean())
test_data['x2_mean'].fillna(test_data['x2_mean'].mode()[0], inplace=True)
train_data['x3_freq'] = train_data['x3'].map(train_data['x3'].value_counts())
test_data['x3_freq'] = test_data['x3'].map(train_data['x3'].value_counts())
test_data['x3_freq'].fillna(test_data['x3_freq'].mode()[0], inplace=True)
train_data['x4_freq'] = train_data['x4'].map(train_data['x4'].value_counts())
test_data['x4_freq'] = test_data['x4'].map(train_data['x4'].value_counts())
test_data['x4_freq'].fillna(test_data['x4_freq'].mode()[0], inplace=True)
train_data['x6_freq'] = train_data['x6'].map(train_data['x6'].value_counts())
test_data['x6_freq'] = test_data['x6'].map(train_data['x6'].value_counts())
test_data['x6_freq'].fillna(test_data['x6_freq'].mode()[0], inplace=True)
train_data['x6_mean'] = train_data['x6'].map(train_data.groupby('x6')['target'].mean())
test_data['x6_mean'] = test_data['x6'].map(train_data.groupby('x6')['target'].mean())
test_data['x6_mean'].fillna(test_data['x6_mean'].mode()[0], inplace=True)
train_data['x7_freq'] = train_data['x7'].map(train_data['x7'].value_counts())
test_data['x7_freq'] = test_data['x7'].map(train_data['x7'].value_counts())
test_data['x7_freq'].fillna(test_data['x7_freq'].mode()[0], inplace=True)
train_data['x7_mean'] = train_data['x7'].map(train_data.groupby('x7')['target'].mean())
test_data['x7_mean'] = test_data['x7'].map(train_data.groupby('x7')['target'].mean())
test_data['x7_mean'].fillna(test_data['x7_mean'].mode()[0], inplace=True)
train_data['x8_freq'] = train_data['x8'].map(train_data['x8'].value_counts())
test_data['x8_freq'] = test_data['x8'].map(train_data['x8'].value_counts())
test_data['x8_freq'].fillna(test_data['x8_freq'].mode()[0], inplace=True)
train_data['x8_mean'] = train_data['x8'].map(train_data.groupby('x8')['target'].mean())
test_data['x8_mean'] = test_data['x8'].map(train_data.groupby('x8')['target'].mean())
test_data['x8_mean'].fillna(test_data['x8_mean'].mode()[0], inplace=True)
交叉验证(Cross-Validation)是机器学习中常用的一种模型评估方法,用于评估模型的性能和泛化能力。
它的主要目的是在有限的数据集上,尽可能充分地利用数据来评估模型,避免过拟合或欠拟合,并提供对模型性能的更稳健的估计。
交叉验证的基本思想是将原始的训练数据划分为多个子集(也称为折叠),然后将模型训练和验证进行多次循环。
在每一次循环中,使用其中一个子集作为验证集,其他子集作为训练集。这样可以多次计算模型的性能指标,并取这些指标的平均值作为最终的模型性能评估结果。
1、为何使用交叉验证?
2、 常见的交叉验证方法:
# 导入模型
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier
# 导入交叉验证和评价指标
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import classification_report
# 训练并验证SGDClassifier(基于随机梯度下降(Stochastic Gradient Descent)优化算法的分类器)
pred = cross_val_predict(
SGDClassifier(max_iter=10),
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1),
train_data['target']
)
print(classification_report(train_data['target'], pred, digits=3))
accuracy:准确率。准确率(precision)可以衡量一个样本为负的标签被判成正,召回率(recall)用于衡量所有正例。
macro avg:"macro avg"是一种评估多类分类模型性能的指标之一。它是计算每个类别的指标(如准确度、精确度、召回率、F1值等),然后对所有类别的指标取平均得到的。
“micro”选项:表示在多分类中的对所有label进行micro-averaging产生一个平均precision,recall和F值
weighted avg:
“weighted”选项:表示会产生一个weighted-averaging的F值。
具体可见机器学习各种指标学习
# 训练并验证决策树DecisionTreeClassifier
pred = cross_val_predict(
DecisionTreeClassifier(),
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1),
train_data['target']
)
print(classification_report(train_data['target'], pred, digits=3))
# 训练并验证MultinomialNB
pred = cross_val_predict(
MultinomialNB(),
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1),
train_data['target']
)
print(classification_report(train_data['target'], pred, digits=3))
# 训练并验证RandomForestClassifier
pred = cross_val_predict(
RandomForestClassifier(n_estimators=5),
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1),
train_data['target']
)
print(classification_report(train_data['target'], pred, digits=3))
从上述四个模型来看决策树和随机森林表现较好,二者中决策树更好,我想决策树模型在本数据集上的优异表现可能是由于其对特征工程、数据分布、不平衡数据和特征交互效应的自然处理能力所致。当然,还应该进一步调整和优化所有模型的参数来进一步提高性能。
同时我又使用了XGBoost和LightgBM 两种模型进行交叉验证,效果如下:
import xgboost as xgb
import lightgbm as lgb
from sklearn.metrics import classification_report
from sklearn.model_selection import cross_val_predict
# 定义XGBoost模型
xgb_model = xgb.XGBClassifier()
# 使用交叉验证进行训练和验证
pred_xgb = cross_val_predict(
xgb_model,
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1),
train_data['target']
)
print(classification_report(train_data['target'], pred_xgb, digits=3))
# 定义LightGBM模型
lgb_model = lgb.LGBMClassifier()
# 使用交叉验证进行训练和验证
pred_lgb = cross_val_predict(
lgb_model,
train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1),
train_data['target']
)
print(classification_report(train_data['target'], pred_lgb, digits=3))
从macro avg和weightzvg的角度来看表现最好的还是决策树。
1、贝叶斯优化:贝叶斯优化是一种基于贝叶斯定理的技术,它描述了与当前知识相关的事件发生的概率。将贝叶斯优化用于超参数优化时,算法会从一组超参数中构建一个概率模型,以优化特定指标。它使用回归分析迭代地选择最佳的一组超参数。
2、网格搜索:借助网格搜索,您可以指定一组超参数和性能指标,然后算法会遍历所有可能的组合来确定最佳匹配。网格搜索很好用,但它相对乏味且计算量大,特别是使用大量超参数时。
3、随机搜索:虽然随机搜索与网格搜索基于相似的原则,但随机搜索在每次迭代时会随机选择一组超参数。当相对较少的超参数主要决定模型的结果时,该方法效果良好。
看完一位0.86+大佬的随机森林调优笔记分享我尝试使用随机森林调优模型
通过设定已知效果较好的参数组合来提高tpe参数优化的效率
#设定已知好的参数组合:就默认的参数组合就已经很好了
good_params = {
'n_estimators': 100,
'max_depth': None,
'min_samples_split': 2
......
}
#这里的loss就是上面五交叉认证的相反数-score,将其转化为一个结果对象,加入trials:
good_result = {'loss': 0.95, 'status': STATUS_OK}
trials.insert_trial_docs([{
'tid': len(trials) + 1,
'spec': good_params,
'result': good_result,
'misc': {}
}])
#运行tpe搜索
best = fmin(fn=objective, space=space, algo=tpe.suggest, max_evals=100, trials=trials)
本次优化的参数:
n_estimators:随机森林模型中包含决策树模型的个数
max_depth:决策树模型的最大深度
max_features:用于构建决策树时选取的最大特征数量
min_samples_leaf:叶子节点最少样本数
min_samples_split:当前节点允许分裂的最小样本数
criterion:节点分裂依据
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
import time
n_estimators:随机森林模型中包含决策树模型的个数
#这里的train_data就是上面读入数据后,特征处理好后的待训练的数据
data = train_data.iloc[:,:-1]
lable = train_data.iloc[:,-1]
start=time.time()
scorel = []
for i in range(0,200,10): # 迭代建立包含0-200棵决策树的RF模型进行对比
rfc = RandomForestClassifier(n_estimators=i+1,n_jobs=-1,random_state=90)
score = cross_val_score(rfc,data,lable,cv=10).mean()
scorel.append(score)
print(max(scorel),(scorel.index(max(scorel))*10)+1)
end=time.time()
print('Running time: %s Seconds'%(end-start))
plt.figure(figsize=[20,5])
plt.plot(range(1,201,10),scorel)
plt.show()
结果:
0.9613823613698237 131 Running time: 5530.6381804943085 Seconds
…
最后优化结果
clf = RandomForestClassifier(n_estimators=131,
max_depth=33,
n_jobs=-1,
max_features=9,
min_samples_leaf=1,
min_samples_split=2,
criterion = 'entropy'
)
clf.fit(
train_data.drop(['target'], axis=1),
train_data['target']
)
y_pred = clf.predict(X_val)
# 计算准确率
accuracy = accuracy_score(y_val, y_pred)
print("Accuracy:", accuracy)
# 计算F1分数
f1 = f1_score(y_val, y_pred)
print("F1 score:", f1)
提交上去分数达到0.79+
至此分数就上不去了,接下来的操作都是反向调优哈哈。
做了一下特征重要性得分,来评估各个特征对目标变量的影响程度
# 获取字段列表
l0 = ['x1_freq', 'x2_freq', 'x3_freq', 'x4_freq', 'x5_freq', 'x6_freq', 'x7_freq', 'x8_freq',
'x1_mean', 'x2_mean', 'x3_mean', 'x4_mean', 'x5_mean', 'x6_mean', 'x7_mean', 'x8_mean',
'x1_std', 'x2_std', 'x3_std', 'x4_std', 'x5_std', 'x6_std', 'x7_std', 'x8_std',
'key1_freq', 'key2_freq', 'key3_freq', 'key4_freq', 'key5_freq', 'key6_freq', 'key7_freq', 'key8_freq', 'key9_freq',
'key1_mean', 'key2_mean', 'key3_mean', 'key4_mean','key5_mean', 'key6_mean', 'key7_mean', 'key8_mean', 'key9_mean',
'key1_std', 'key2_std', 'key3_std', 'key4_std', 'key5_std', 'key6_std', 'key7_std', 'key8_std', 'key9_std',
'unmap_isunknown', 'udmap', 'common_ts', 'uuid', 'target', 'common_ts_hour', 'day', 'common_ts_minute','dayofweek',
'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8',
'eid', 'eid_std', 'eid_mean', 'eid_freq',
'key1', 'key2', 'key3', 'key4', 'key5', 'key6', 'key7', 'key8', 'key9'
]
# 训练模型:按需分组选取特征
x = train_data.drop(['x1_freq', 'x2_freq', 'x3_freq', 'x4_freq', 'x5_freq', 'x6_freq', 'x7_freq', 'x8_freq',
'x1_mean', 'x2_mean', 'x3_mean', 'x4_mean', 'x5_mean', 'x6_mean', 'x7_mean', 'x8_mean',
'x1_std', 'x2_std', 'x3_std', 'x4_std', 'x5_std', 'x6_std', 'x7_std', 'x8_std',
'key1_freq', 'key2_freq', 'key3_freq', 'key4_freq', 'key5_freq', 'key6_freq', 'key7_freq', 'key8_freq','key9_freq',
'key1_mean', 'key2_mean', 'key3_mean', 'key4_mean','key5_mean', 'key6_mean', 'key7_mean', 'key8_mean','key9_mean',
'key1_std', 'key2_std', 'key3_std', 'key4_std', 'key5_std', 'key6_std', 'key7_std', 'key8_std', 'key9_std',
'udmap', 'common_ts', 'uuid', 'target', 'common_ts_hour', 'day', 'common_ts_minute','dayofweek',
'x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8',
'eid', 'eid_std', 'eid_mean', 'eid_freq',
'key1', 'key2', 'key3', 'key4', 'key5', 'key6', 'key7', 'key8', 'key9'
], axis=1)
y = train_data['target']
clf = DecisionTreeClassifier()
clf.fit(x, y)
# 获取特征重要性得分
feature_importances = clf.feature_importances_
# 创建特征名列表
feature_names = list(x.columns)
# 创建一个DataFrame,包含特征名和其重要性得分
feature_importances_df = pd.DataFrame({'feature': feature_names, 'importance': feature_importances})
# 对特征重要性得分进行排序
feature_importances_df = feature_importances_df.sort_values('importance', ascending=False)
# 颜色映射
colors = plt.cm.viridis(np.linspace(0, 1, len(feature_names)))
# 可视化特征重要性
fig, ax = plt.subplots(figsize=(10, 6))
ax.barh(feature_importances_df['feature'], feature_importances_df['importance'], color=colors)
ax.invert_yaxis() # 翻转y轴,使得最大的特征在最上面
ax.set_xlabel('特征重要性', fontsize=12) # 图形的x标签
ax.set_title('决策树特征重要性可视化', fontsize=16)
for i, v in enumerate(feature_importances_df['importance']):
ax.text(v + 0.01, i, str(round(v, 3)), va='center', fontname='Times New Roman', fontsize=10)
# 保存图形
plt.savefig('./特征重要性.jpg', dpi=400, bbox_inches='tight')
plt.show()
# 使用Decision Tree Classifier对模型进行训练
clf = DecisionTreeClassifier()
X = train_data.drop(['udmap', 'common_ts', 'uuid', 'target'], axis=1)
y = train_data['target']
clf.fit(X, y)
# 绘制特征重要性柱状图
import matplotlib.pyplot as plt
# 获取特征重要性分数
feature_importances = clf.feature_importances_
# 创建特征重要性 DataFrame
importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': feature_importances})
# 按重要性从大到小排序
importance_df = importance_df.sort_values(by='Importance', ascending=False)
plt.figure(figsize=(80, 6))
plt.bar(importance_df['Feature'], importance_df['Importance'])
接着绘制了一个绘制决策树特征重要性柱状图
利用重要的commom_ts时间特征的week, day, or minute去与target做特征组合,但是效果似乎不咋好,不如之前提取的特征分数高
最后介绍暗最高分的来源——AutoGluon
只需几行代码即可在原始数据上构建机器学习解决方案。
哈哈先上代码
pip install autogluon
import numpy as np
import pandas as pd
from autogluon.tabular import TabularDataset
from autogluon.tabular import TabularPredictor
train_data = TabularDataset('D:/D/Download/360安全浏览器下载/用户新增预测挑战赛公开数据/train.csv')
test_data = TabularDataset('D:/D/Download/360安全浏览器下载/用户新增预测挑战赛公开数据/test.csv')
submit = pd.DataFrame()
submit["uuid"] = test_data["uuid"]
label = "target"
predictor = TabularPredictor(
label = label,
problem_type="binary",
eval_metric="f1"
).fit(
train_data.drop(columns=["uuid"]),
excluded_model_types=[
"CAT",
"NN_TORCH",
"FASTAI",
],
)
submit[f"{label}"] = predictor.predict(test_data.drop(columns=["uuid"]))
submit.to_csv("D:/D/Download/360安全浏览器下载/用户新增预测挑战赛公开数据/submit.csv",index=False)