(四)updateStateByKey和mapWithState

一、updateStateByKey算子应用示例

object SparkStreamingApp {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[2]").setAppName("SparkStreamingApp")
    val ssc = new StreamingContext(conf,Seconds(5))
    val lines = ssc.socketTextStream("hadoop000",9999)
    val words = lines.flatMap(_.split(" "))
    val pairs = words.map(x=>(x,1))
    val wordcounts = pairs.reduceByKey(_+_)
    wordcounts.print()

    ssc.start()
    ssc.awaitTermination()
  }
}

上面这段简单的wordcount代码,输入一批数据就处理一批数据,输出结果都是当前批次数据的统计结果,那么怎么能够统计出所有输入数据的一个总的统计结果呢?再此介绍一下updateStateByKey方法

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}

object UpdateStatebyKeyApp {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[2]").setAppName("UpdateStatebyKeyApp")
    val ssc = new StreamingContext(conf,Seconds(5))
    ssc.checkpoint("hdfs://192.168.137.251:9000/spark/data")
    val lines = ssc.socketTextStream("hadoop000",9999)
    val words = lines.flatMap(_.split(" "))
    val pairs = words.map(x=>(x,1))
    val wordcounts = pairs.updateStateByKey(updateFunction)
    wordcounts.print()

    ssc.start()
    ssc.awaitTermination()
  }
  def updateFunction(newValues: Seq[Int], oldValues: Option[Int]): Option[Int] = {
    val newCount = newValues.sum
    val oldCount = oldValues.getOrElse(0)
    Some(newCount + oldCount)
  }
}

输入:

[hadoop@hadoop000 ~]$ nc -lk 9999
huluwa huluwa dawa erwa

spark计算结果:

18/11/13 14:19:00 INFO CheckpointWriter: Submitted checkpoint of time 1542089940000 ms to writer queue
18/11/13 14:19:00 INFO CheckpointWriter: Saving checkpoint for time 1542089940000 ms to file 'hdfs://192.168.137.251:9000/spark/data/checkpoint-1542089940000'
-------------------------------------------
Time: 1542089940000 ms
-------------------------------------------
(huluwa,2)
(dawa,1)
(erwa,1)
...
...
...
-------------------------------------------
Time: 1542089945000 ms
-------------------------------------------
(huluwa,2)
(dawa,1)
(erwa,1)
...
...
...
-------------------------------------------
Time: 1542089950000 ms
-------------------------------------------
(huluwa,2)
(dawa,1)
(erwa,1)

如果不输入新的数据,会一直展示之前的结果
再输入一条新的数据:

[hadoop@hadoop000 ~]$ nc -lk 9999
huluwa huluwa dawa erwa
huluwa huluwa dae erwa

输出结果:

-------------------------------------------
Time: 1542089970000 ms
-------------------------------------------
(dae,1)
(huluwa,4)
(dawa,1)
(erwa,2)

继续输入数据:

[hadoop@hadoop000 ~]$ nc -lk 9999
huluwa huluwa dawa erwa
huluwa huluwa dae erwa
huluwa huluwa dawa erwa
huluwa huluwa dawa erwa
huluwa huluwa dawa erwa
huluwa huluwa dae erwa
huluwa huluwa dae erwa

结果:

-------------------------------------------
Time: 1542090080000 ms
-------------------------------------------
(dae,3)
(huluwa,14)
(dawa,4)
(erwa,7)

查看checkpoint文件夹下,发现有很多类似于checkpoint-1542090065000的状态文件

[hadoop@hadoop000 data]$ hadoop fs -ls /spark/data
Found 15 items
-rw-r--r--   1 ÃÎcandybear supergroup       3514 2018-11-13 22:21 /spark/data/checkpoint-1542090065000
-rw-r--r--   1 ÃÎcandybear supergroup       3518 2018-11-13 22:21 /spark/data/checkpoint-1542090065000.bk
-rw-r--r--   1 ÃÎcandybear supergroup       3511 2018-11-13 22:21 /spark/data/checkpoint-1542090070000
-rw-r--r--   1 ÃÎcandybear supergroup       3518 2018-11-13 22:21 /spark/data/checkpoint-1542090070000.bk
-rw-r--r--   1 ÃÎcandybear supergroup       3514 2018-11-13 22:21 /spark/data/checkpoint-1542090075000
-rw-r--r--   1 ÃÎcandybear supergroup       3518 2018-11-13 22:21 /spark/data/checkpoint-1542090075000.bk
-rw-r--r--   1 ÃÎcandybear supergroup       3511 2018-11-13 22:21 /spark/data/checkpoint-1542090080000
-rw-r--r--   1 ÃÎcandybear supergroup       3518 2018-11-13 22:21 /spark/data/checkpoint-1542090080000.bk
-rw-r--r--   1 ÃÎcandybear supergroup       3512 2018-11-13 22:21 /spark/data/checkpoint-1542090085000
-rw-r--r--   1 ÃÎcandybear supergroup       3516 2018-11-13 22:21 /spark/data/checkpoint-1542090085000.bk
drwxr-xr-x   - ÃÎcandybear supergroup          0 2018-11-13 22:21 /spark/data/e02daf3a-0805-4612-b612-67ca34d32ff8
drwxr-xrwx   - ÃÎcandybear supergroup          0 2018-11-13 22:21 /spark/data/receivedBlockMetadata

这些checkpoint文件都是小文件,对hdfs的压力很大,怎么解决呢?下文会讲

附:updateStateByKey源码(1.6版本之前用这个)

  /**
   * Return a new "state" DStream where the state for each key is updated by applying
   * the given function on the previous state of the key and the new values of each key.
   * In every batch the updateFunc will be called for each state even if there are no new values.
   * Hash partitioning is used to generate the RDDs with Spark's default number of partitions.
   * @param updateFunc State update function. If `this` function returns None, then
   *                   corresponding state key-value pair will be eliminated.
   * @tparam S State type
   */
  def updateStateByKey[S: ClassTag](
      updateFunc: (Seq[V], Option[S]) => Option[S]
    ): DStream[(K, S)] = ssc.withScope {
    updateStateByKey(updateFunc, defaultPartitioner())
  }

1.6版本之后用mapWithState

/**
   * :: Experimental ::
   * Return a [[MapWithStateDStream]] by applying a function to every key-value element of
   * `this` stream, while maintaining some state data for each unique key. The mapping function
   * and other specification (e.g. partitioners, timeouts, initial state data, etc.) of this
   * transformation can be specified using `StateSpec` class. The state data is accessible in
   * as a parameter of type `State` in the mapping function.
   *
   * Example of using `mapWithState`:
   * {{{
   *    // A mapping function that maintains an integer state and return a String
   *    def mappingFunction(key: String, value: Option[Int], state: State[Int]): Option[String] = {
   *      // Use state.exists(), state.get(), state.update() and state.remove()
   *      // to manage state, and return the necessary string
   *    }
   *
   *    val spec = StateSpec.function(mappingFunction).numPartitions(10)
   *
   *    val mapWithStateDStream = keyValueDStream.mapWithState[StateType, MappedType](spec)
   * }}}
   *
   * @param spec          Specification of this transformation
   * @tparam StateType    Class type of the state data
   * @tparam MappedType   Class type of the mapped data
   */
  @Experimental
  def mapWithState[StateType: ClassTag, MappedType: ClassTag](
      spec: StateSpec[K, V, StateType, MappedType]
    ): MapWithStateDStream[K, V, StateType, MappedType] = {
    new MapWithStateDStreamImpl[K, V, StateType, MappedType](
      self,
      spec.asInstanceOf[StateSpecImpl[K, V, StateType, MappedType]]
    )
  }

二、mapWithState算子应用示例

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, State, StateSpec, StreamingContext}

object MapWithStateApp {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[2]").setAppName("MapWithStateApp")
    val ssc = new StreamingContext(conf,Seconds(5))
    ssc.checkpoint("hdfs://192.168.137.251:9000/spark/data")
    val lines = ssc.socketTextStream("hadoop000",9999)
    val words = lines.flatMap(_.split(" "))
    val pairs = words.map(x=>(x,1)).reduceByKey(_+_)
    // Update the cumulative count using mapWithState
    // This will give a DStream made of state (which is the cumulative count of the words)
    val mappingFunc = (word: String, one: Option[Int], state: State[Int]) => {
      val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
      val output = (word, sum)
      state.update(sum)
      output
    }

    val wordcounts = pairs.mapWithState(StateSpec.function(mappingFunc))
    wordcounts.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

在控制台输入一条数据:

[hadoop@hadoop000 ~]$ nc -lk 9999
hadoop spark spark hive

spark输出结果:

-------------------------------------------
Time: 1542098100000 ms
-------------------------------------------
(hive,1)
(spark,2)
(hadoop,1)

再输入两条数据:

[hadoop@hadoop000 ~]$ nc -lk 9999
hadoop spark spark hive
hadoop spark spark hive
hadoop spark spark hive

输出:

-------------------------------------------
Time: 1542098115000 ms
-------------------------------------------
(hive,3)
(spark,6)
(hadoop,3)

下面输入一条新的数据:

[hadoop@hadoop000 ~]$ nc -lk 9999
hadoop spark spark hive
hadoop spark spark hive
hadoop spark spark hive
huluwa huluwa dawa erwa

发现spark计算结果只展示与输入数据相匹配的结果

-------------------------------------------
Time: 1542098120000 ms
-------------------------------------------
(huluwa,2)
(dawa,1)
(erwa,1)
[hadoop@hadoop000 ~]$ nc -lk 9999
hadoop spark spark hive
hadoop spark spark hive
hadoop spark spark hive
huluwa huluwa dawa erwa
huluwa huluwa dawa erwa
-------------------------------------------
Time: 1542098125000 ms
-------------------------------------------
(huluwa,4)
(dawa,2)
(erwa,2)

那之前的计算结果是否还存在?验证一下:

[hadoop@hadoop000 ~]$ nc -lk 9999
hadoop spark spark hive
hadoop spark spark hive
hadoop spark spark hive
huluwa huluwa dawa erwa
huluwa huluwa dawa erwa
hadoop spark spark hive

从输出结果可以看到,之前的统计结果还存在,只是选择性的展示出来

-------------------------------------------
Time: 1542098135000 ms
-------------------------------------------
(hive,4)
(spark,8)
(hadoop,4)

打开checkpoint目录,和updateStateByKey一样,有很多checkpoint-时间戳的小文件存在

[hadoop@hadoop000 data]$ hadoop fs -ls /spark/data
Found 12 items
-rw-r--r--   1 ÃÎcandybear supergroup       3974 2018-11-14 00:35 /spark/data/checkpoint-1542098120000
-rw-r--r--   1 ÃÎcandybear supergroup       3978 2018-11-14 00:35 /spark/data/checkpoint-1542098120000.bk
-rw-r--r--   1 ÃÎcandybear supergroup       3975 2018-11-14 00:35 /spark/data/checkpoint-1542098125000
-rw-r--r--   1 ÃÎcandybear supergroup       3979 2018-11-14 00:35 /spark/data/checkpoint-1542098125000.bk
-rw-r--r--   1 ÃÎcandybear supergroup       3975 2018-11-14 00:35 /spark/data/checkpoint-1542098130000
-rw-r--r--   1 ÃÎcandybear supergroup       3979 2018-11-14 00:35 /spark/data/checkpoint-1542098130000.bk
-rw-r--r--   1 ÃÎcandybear supergroup       4037 2018-11-14 00:35 /spark/data/checkpoint-1542098135000
-rw-r--r--   1 ÃÎcandybear supergroup       3979 2018-11-14 00:35 /spark/data/checkpoint-1542098135000.bk
-rw-r--r--   1 ÃÎcandybear supergroup       4043 2018-11-14 00:35 /spark/data/checkpoint-1542098140000
-rw-r--r--   1 ÃÎcandybear supergroup       4047 2018-11-14 00:35 /spark/data/checkpoint-1542098140000.bk
drwxr-xr-x   - ÃÎcandybear supergroup          0 2018-11-14 00:35 /spark/data/d55f3470-753c-4735-9b18-1b2c75f3a300
drwxr-xrwx   - ÃÎcandybear supergroup          0 2018-11-14 00:34 /spark/data/receivedBlockMetadata

那么updateStateByKey和mapWithState产生这些小文件应该怎么处理或者怎么规避产生这么多的小文件呢?
其实解决办法很简单,想要统计从某个时间段内的数据,可以不使用这两个算子,每个批次的数据处理之后在后面附上一个处理时间,然后保存到数据库比如MySQL中,等需要的时候,再取出历史数据进行统计,这样就从源头上避免了小文件的产生,数据库保存格式如下:

+---------+-------+---------------+
|   word  | count |   timestamp   |
+---------+-------+---------------+
|   hive  |   1   | 1542098135000 |
|  spark  |   2   | 1542098135000 |
|  hadoop |   1   | 1542098135000 |
|   hive  |   1   | 1542098140000 |
|  spark  |   2   | 1542098140000 |
|  hadoop |   1   | 1542098140000 |
|   hive  |   1   | 1542098145000 |
|  spark  |   2   | 1542098145000 |
|  hadoop |   1   | 1542098145000 |
+---------+-------+---------------+

你可能感兴趣的:((四)updateStateByKey和mapWithState)